Skip to main content

Advertisement

Log in

Efficient Hydrogen Generation with Co3O4@TiO2-g-C3N4 Composite Catalyst via Catalytic NaBH4 Hydrolysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, g-C3N4-TiO2 nanocomposite structure has been loaded with Co3O4 via electroless plating and thermal annealing to form Co3O4@g-C3N4-TiO2 catalyst material for H2 generation from NaBH4 hydrolysis. The material characterizations of the fabricated catalyst have been performed before and after exposure to an aqueous NaBH4 solution to understand the changes in catalytic performance and material properties. The Arrhenius activation energies have been determined to be 58 kJ mol−1. The hydrogen generation rates have been observed as 180 and 1200 mL min−1 gcat−1 for the catalyst hydrolysis of NaBH4 at 30 °C and 60 °C, respectively. The catalytic activity performed in NaBH4 solution exhibited good reusability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218:835–849. https://doi.org/10.1016/j.jclepro.2019.02.046

    Article  CAS  Google Scholar 

  2. Kocer T, Oztuna FES, Kurtoğlu SF et al (2021) Graphene aerogel-supported ruthenium nanoparticles for COx-free hydrogen production from ammonia. Appl Catal A: Gen. https://doi.org/10.1016/j.apcata.2020.117969

    Article  Google Scholar 

  3. Salinas-Torres D, Navlani-García M, Mori K et al (2019) Nitrogen-doped carbon materials as a promising platform toward the efficient catalysis for hydrogen generation. Appl Catal A: Gen 571:25–41. https://doi.org/10.1016/j.apcata.2018.11.034

    Article  CAS  Google Scholar 

  4. Armor JN (2005) Catalysis and the hydrogen economy. Catal Lett 101:131–135. https://doi.org/10.1007/s10562-005-4877-3

    Article  CAS  Google Scholar 

  5. Zhang F, Zhao P, Niu M, Maddy J (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrog Energy 41:14535–14552. https://doi.org/10.1016/j.ijhydene.2016.05.293

    Article  CAS  Google Scholar 

  6. Grzybek G, Góra-Marek K, Patulski P et al (2021) Optimization of the potassium promotion of the Co|α-Al2O3 catalyst for the effective hydrogen production via ethanol steam reforming. Appl Catal A: Gen. https://doi.org/10.1016/j.apcata.2021.118051

    Article  Google Scholar 

  7. Kim C, Lee SS, Li W, Fortner JD (2020) Towards optimizing cobalt based metal oxide nanocrystals for hydrogen generation via NaBH4 hydrolysis. Appl Catal A: Gen 589:117303. https://doi.org/10.1016/j.apcata.2019.117303

    Article  CAS  Google Scholar 

  8. Guo J, Wang B, Yang D et al (2020) Rugae-like Ni2P-CoP nanoarrays as a bi-functional catalyst for hydrogen generation: NaBH4 hydrolysis and water reduction. Appl Catal B: Environ 265:1–7. https://doi.org/10.1016/j.apcatb.2019.118584

    Article  CAS  Google Scholar 

  9. Saka C (2021) Highly active and durable hydrogen release in NaBH4 methanolysis reaction with sulphur and phosphorus-doped metal-free microalgal carbon nanoparticles. Appl Catal B: Environ 292:120165. https://doi.org/10.1016/j.apcatb.2021.120165

    Article  CAS  Google Scholar 

  10. Demirci S, Sunol AK, Sahiner N (2020) Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Appl Catal B: Environ 261:118242. https://doi.org/10.1016/j.apcatb.2019.118242

    Article  CAS  Google Scholar 

  11. Abdelhamid HN (2020) A review on hydrogen generation from the hydrolysis of sodium borohydride. Int J Hydrog Energy 46:726–765. https://doi.org/10.1016/j.ijhydene.2020.09.186

    Article  CAS  Google Scholar 

  12. Akbayrak S, Özkar S (2016) Inverse relation between the catalytic activity and catalyst concentration for the ruthenium (0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride. J Mol Catal A: Chem 424:254–260. https://doi.org/10.1016/j.molcata.2016.09.001

    Article  CAS  Google Scholar 

  13. Semiz L, Abdullayeva N, Sankir M (2018) Nanoporous Pt and Ru catalysts by chemical dealloying of Pt-Al and Ru-Al alloys for ultrafast hydrogen generation. J Alloys Compd 744:110–115. https://doi.org/10.1016/j.jallcom.2018.02.082

    Article  CAS  Google Scholar 

  14. Sankir M, Serin RB, Semiz L (2013) Unusual behavior of dynamic hydrogen generation from sodium borohydride. Int J Hydrog Energy 39:2608–2613. https://doi.org/10.1016/j.ijhydene.2013.12.011

    Article  CAS  Google Scholar 

  15. Sankir M, Semiz L, Serin RB (2015) Hydrogen generation from nanoflower platinum films. Int J Hydrog Energy 40:8522–8529. https://doi.org/10.1016/j.ijhydene.2015.04.137

    Article  CAS  Google Scholar 

  16. Crisafulli C, Scire S, Zito R, Bongiorno C (2012) Role of the support and the Ru precursor on the performance of Ru / carbon catalysts towards H 2 production through NaBH 4 hydrolysis. Catal Lett 142:882–888. https://doi.org/10.1007/s10562-012-0844-y

    Article  CAS  Google Scholar 

  17. Zhou J, Yan J, Meng X et al (2021) Co0.45W0.55 nanocomposite from ZIF-67 : an efficient and heterogeneous catalyst for H2 generation upon NaBH4 hydrolysis. Catal Lett. https://doi.org/10.1007/s10562-021-03661-1

    Article  Google Scholar 

  18. Patil KN, Prasad D, Bhanushali JT et al (2020) Sustainable hydrogen generation by catalytic hydrolysis of NaBH4 using tailored nanostructured urchin-like CuCo2O4 spinel catalyst. Catal Lett 150:586–604. https://doi.org/10.1007/s10562-019-03025-w

    Article  CAS  Google Scholar 

  19. Reza M, Yasamin N, Fateme B (2015) One pot synthesis of nickel nanoparticles stabilized on rGO / polyethyleneimine aerogel for the catalytic hydrogen generation. Catal Lett 145:1798–1807. https://doi.org/10.1007/s10562-015-1567-7

    Article  CAS  Google Scholar 

  20. Zhang J, Li Y, Yang L et al (2021) Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis. Catal Lett. https://doi.org/10.1007/s10562-021-03730-5

    Article  Google Scholar 

  21. Patel N, Miotello A (2014) Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides : a review and the perspectives to substitute noble metals. Int J Hydrog Energy 40:1429–1464. https://doi.org/10.1016/j.ijhydene.2014.11.052

    Article  CAS  Google Scholar 

  22. Bennici S, Auroux A, Garron A, Dariusz S (2009) New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. Int J Hydrog Energy 34:1185–1199. https://doi.org/10.1016/j.ijhydene.2008.11.027

    Article  CAS  Google Scholar 

  23. Chen Y, Pan C (2013) Effect of various Co–B catalyst synthesis conditions on catalyst surface morphology and NaBH4 hydrolysis reaction kinetic parameters. Int J Hydrog Energy 39:1648–1663. https://doi.org/10.1016/j.ijhydene.2013.11.067

    Article  CAS  Google Scholar 

  24. Liu CH, Chen BH, Hsueh CL et al (2009) Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution. Appl Catal B: Environ 91:368–379. https://doi.org/10.1016/j.apcatb.2009.06.003

    Article  CAS  Google Scholar 

  25. Krishnan P, Advani SG, Prasad AK (2009) Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation. Appl Catal B: Environ 86:137–144. https://doi.org/10.1016/j.apcatb.2008.08.005

    Article  CAS  Google Scholar 

  26. Metin Ö, Özkar S (2009) Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels 23:3517–3526. https://doi.org/10.1021/ef900171t

    Article  CAS  Google Scholar 

  27. Lu YC, Chen MS, Chen YW (2012) Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. Int J Hydrog Energy 37:4254–4258. https://doi.org/10.1016/j.ijhydene.2011.11.105

    Article  CAS  Google Scholar 

  28. Dönmez F, Ayas N (2020) Synthesis of Ni/TiO2 catalyst by sol-gel method for hydrogen production from sodium borohydride. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.11.233

    Article  Google Scholar 

  29. Duman S, Ozkar S (2018) Ceria supported manganese (0) nanoparticle catalysts for hydrogen generation from the hydrolysis of sodium borohydride. Int J Hydrog Energy 43:15262–15274. https://doi.org/10.1016/j.ijhydene.2018.06.120

    Article  CAS  Google Scholar 

  30. Li YT, Zhang XL, Peng ZK et al (2020) Hierarchical porous g-C3N4 coupled ultrafine runi alloys as extremely active catalysts for the hydrolytic dehydrogenation of ammonia borane. ACS Sustain Chem Eng 8:8458–8468. https://doi.org/10.1021/acssuschemeng.0c03009

    Article  CAS  Google Scholar 

  31. Wang Z, Chen Y, He Y et al (2021) Facile construction of composition-tuned ruthenium-nickel nanoparticles on g-C3N4 for enhanced hydrolysis of ammonia borane without base additives. Int J Hydrog Energy 46:11587–11596. https://doi.org/10.1016/j.ijhydene.2020.12.199

    Article  CAS  Google Scholar 

  32. Li YT, Zhang XL, Peng ZK et al (2020) Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4. Fuel 277:118243. https://doi.org/10.1016/j.fuel.2020.118243

    Article  CAS  Google Scholar 

  33. Li YT, Zhang SH, Zheng GP et al (2020) Ultrafine Ru nanoparticles anchored to porous g- C3N4 as efficient catalysts for ammonia borane hydrolysis. Appl Catal A: Gen 595:2–9. https://doi.org/10.1016/j.apcata.2020.117511

    Article  CAS  Google Scholar 

  34. Lu R, Hu M, Xu C et al (2018) Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions. Int J Hydrog Energy 43:7038–7045. https://doi.org/10.1016/j.ijhydene.2018.02.148

    Article  CAS  Google Scholar 

  35. Guan S, An L, Ashraf S et al (2020) Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl Catal B: Environ 269:118775. https://doi.org/10.1016/j.apcatb.2020.118775

    Article  CAS  Google Scholar 

  36. Duan S, Han G, Su Y et al (2016) Magnetic Co@g-C3N4 core-shells on rGO sheets for momentum transfer with catalytic activity toward continuous-flow hydrogen generation. Langmuir 32:6272–6281. https://doi.org/10.1021/acs.langmuir.6b01248

    Article  CAS  PubMed  Google Scholar 

  37. Tong J, Zhang J, Wang Y et al (2019) Preparation of Co-plated WC powders by a non-precious-Co-activation triggered electroless plating strategy. Adv Powder Technol 30:2311–2319. https://doi.org/10.1016/j.apt.2019.07.012

    Article  CAS  Google Scholar 

  38. Chen X, Xia J, Peng J et al (2000) Carbon-nanotube metal-matrix composites prepared by electroless plating. Sci Technol 60:301–306

    CAS  Google Scholar 

  39. Shabunya SI, Minkina VG, Kalinin VI et al (2021) Kinetics of the catalytic hydrolysis of concentrated aqueous solutions of NaBH4 on Co/TiO2 powder. Kinet Catal 62:350–359. https://doi.org/10.1134/S0023158421030083

    Article  CAS  Google Scholar 

  40. González-Burciaga LA, Núñez-Núñez CM, Morones-Esquivel MM et al (2020) Characterization and comparative performance of TiO2 photocatalysts on 6-mercaptopurine degradation by solar heterogeneous photocatalysis. Catalysts 10:118. https://doi.org/10.3390/catal10010118

    Article  CAS  Google Scholar 

  41. Ehsan MA, Hakeem AS, Rehman A (2020) Hierarchical growth of CoO nanoflower thin films influencing the electrocatalytic oxygen evolution reaction. Electrocatalysis 11:282–291. https://doi.org/10.1007/s12678-020-00585-z

    Article  CAS  Google Scholar 

  42. Mujtaba J, Sun H, Huang G et al (2016) Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci Rep 6:20592. https://doi.org/10.1038/srep20592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karthikayini MP, Thirupathi T, Wang G et al (2016) Highly active and durable non-precious metal catalyst for the oxygen reduction reaction in acidic medium. J Electrochem Soc 163:F539–F547. https://doi.org/10.1149/2.1001606jes

    Article  CAS  Google Scholar 

  44. Yu B, Meng F, Khan MW et al (2020) Synthesis of hollow TiO2@g-C3N4/Co3O4 core-shell microspheres for effective photooxidation degradation of tetracycline and MO. Ceram Int 46:13133–13143. https://doi.org/10.1016/j.ceramint.2020.02.087

    Article  CAS  Google Scholar 

  45. Feng Y, Li L, Niu S et al (2012) Controlled synthesis of highly active mesoporous Co3O4 polycrystals for low temperature CO oxidation. Appl Catal B: Environ 111–112:461–466. https://doi.org/10.1016/j.apcatb.2011.10.035

    Article  CAS  Google Scholar 

  46. Ji J, Deng K, Li J et al (2021) In situ transformation of 3D Co3O4 nanoparticles to 2D nanosheets with rich surface oxygen vacancies to boost hydrogen generation from NaBH4. Chem Eng J 424:130350. https://doi.org/10.1016/j.cej.2021.130350

    Article  CAS  Google Scholar 

  47. Zhang X, Zhang Q, Xu B et al (2020) Efficient hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: positive roles of sulfur-containing salts. ACS Appl Mater Interfaces 12:9376–9386. https://doi.org/10.1021/acsami.9b22645

    Article  CAS  PubMed  Google Scholar 

  48. Yuan H, Wang S, Ma Z et al (2021) Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem Eng J 404:126474. https://doi.org/10.1016/j.cej.2020.126474

    Article  CAS  Google Scholar 

  49. Cheng J, Xiang C, Zou Y et al (2015) Highly active nanoporous Co-B-TiO2 framework for hydrolysis of NaBH4. Ceram Int 41:899–905. https://doi.org/10.1016/j.ceramint.2014.09.007

    Article  CAS  Google Scholar 

  50. Shen X, Wang Q, Wu Q et al (2015) CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy 90:464–474. https://doi.org/10.1016/j.energy.2015.07.075

    Article  CAS  Google Scholar 

  51. Wang Q, Wei L, Ma M, Liu H (2020) Hydrogen generation from the hydrolysis of sodium borohydride using Co3O4 hollow microspheres as high-efficient catalyst precursor synthesized by facile bio-template method. Energy Sour A: Recover Util Environ Eff 00:1–10. https://doi.org/10.1080/15567036.2020.1805046

    Article  CAS  Google Scholar 

  52. Wen Y, Qu D, An L et al (2019) Defective g-C3N4 prepared by the NaBH4 reduction for high-performance H 2 production. ACS Sustain Chem Eng 7:2343–2349. https://doi.org/10.1021/acssuschemeng.8b05124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Belarusian Republican Foundation for Basic Research (Project No. T19TYuB-004) and the Council for Scientific and Technological Research of Turkey (TUBITAK) (Project No. 119M030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina G. Minkina, Mehmet Sankir or Nurdan Demirci Sankir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colak, T.O., Tuc Altaf, C., Minkina, V.G. et al. Efficient Hydrogen Generation with Co3O4@TiO2-g-C3N4 Composite Catalyst via Catalytic NaBH4 Hydrolysis. Catal Lett 152, 2779–2788 (2022). https://doi.org/10.1007/s10562-021-03848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03848-6

Keywords

Navigation