Skip to main content
Log in

Oxygen Bioavailability is a Rate-Limited Factor in Phytosterols Bioconversion Using a Cyclodextrin-Resting Cell System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To enhance the efficiency of 22-hydroxy-23,24-bisnorchol-4-ene-3-one (HBC) production at high substrate concentrations, the cyclodextrin-resting cell system was used for the bioconversion of phytosterols (PS) in this study. Two intermediates, identified as 4-ene-3-keto steroids and 27-hydroxy-4-ene-3-keto steroids, were accumulated at the early stage of the bioconversion and related to the oxygen bioavailability. We demonstrated that oxygen bioavailability was the main rate-limited factor at high substrate concentrations in the reaction system. Measures improving oxygen transfer rate in the reaction system significantly enhanced the bioconversion efficiency of PS to HBC with a space–time yield of 13.25 g/L/day.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu LQ, Liu YJ, Yao K et al (2016) Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep 6(1):21928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu Y, Wang D, Wang XD et al (2020) A recycled batch biotransformation strategy for 22-hydroxy-23,24-bisnorchol-4-ene-3-one production from high concentration of phytosterols by mycobacterial resting cells. Biotechnol Lett 42(12):2589–2594

    Article  CAS  PubMed  Google Scholar 

  3. Gao XQ, Feng JX, Hua Q et al (2014) Investigation of factors affecting biotransformation of phytosterols to 9-hydroxyandrost-4-ene-3,-17-dione based on the HP-β-CD-resting cells reaction system. Biocatal Biotransform 32(5–6):343–347

    Article  CAS  Google Scholar 

  4. El-Refai H, Abd-Elslam IS (2020) Enhancement of β-sitosterol bioconversion by Fusarium solani using aqueous-organic solvent system. Aust J Basic Appl Sci 4:4107–4112

    Google Scholar 

  5. Hesselink PGM, Van Vliet S, De Vries H et al (1989) Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb Technol 11(7):398–404

    Article  CAS  Google Scholar 

  6. Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov Today 21(2):363–368

    Article  CAS  PubMed  Google Scholar 

  7. Mancilla RA, Little C, Amoroso A (2018) Efficient bioconversion of high concentration phytosterol microdispersion to 4-androstene-3,17-dione (AD) by Mycobacterium sp. B3805. Appl Biochem Biotechnol 185(2):494–506

    Article  CAS  PubMed  Google Scholar 

  8. Yuan JJ, Guan YX, Yao SJ (2017) Evaluation of biocompatible ionic liquids for their application in phytosterols bioconversion by Mycobacterium sp. resting cells. ACS Sustain Chem Eng 5(11):10702–10709

    Article  CAS  Google Scholar 

  9. Donova MV, Nikolayeva VM, Dovbnya DV et al (2017) Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology 153(Pt 6):1981–1992

    Google Scholar 

  10. Fernandes P, Cruz A, Angelova B et al (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32(6):688–705

    Article  CAS  Google Scholar 

  11. Manosroi A, Saowakhon S, Manosroi J (2008) Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem Mol Biol 108(1):132–136

    Article  CAS  PubMed  Google Scholar 

  12. Shtratnikova VY, Schelkunov MI, Dovbnya DV et al (2017) Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Appl Microbiol Biotechnol 101(11):4659–4667

    Article  CAS  PubMed  Google Scholar 

  13. Yao K, Wang FQ, Zhang HC et al (2013) Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng 15:75–87

    Article  CAS  PubMed  Google Scholar 

  14. Sun H, Yang J-L, He K et al (2021) Enhancing production of 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of mycobacteria. Chem Eng Sci 230:116195

    Article  CAS  Google Scholar 

  15. Donova MV, Egorova OA (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447

    Article  CAS  PubMed  Google Scholar 

  16. Giorgi V, Menéndez P, García-Carnelli C (2019) Microbial transformation of cholesterol: reactions and practical aspects—an update. World J Microbiol Biotechnol 35(9):131

    Article  PubMed  Google Scholar 

  17. Casabon I, Swain K, Crowe Adam M et al (2014) Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism. J Bacteriol 196(3):579–587

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shao ML, Zhang X, Rao ZM et al (2019) Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. J Ind Microbiol Biotechnol 46(5):635–647

    Article  CAS  PubMed  Google Scholar 

  19. Yang M, Lu R, Guja KE et al (2015) Unraveling cholesterol catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 acyl-CoA dehydrogenase initiates β-oxidation of 3-oxo-cholest-4-en-26-oyl CoA. ACS Infect Dis 1(2):110–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao AQ, Zhang XQ, Li YM et al (2021) Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 53:107860

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Zhang J, Cao D-D et al (2021) Identification and in situ removal of an inhibitory intermediate to develop an efficient phytosterol bioconversion process using a cyclodextrin-resting cell system. RSC Adv 11(40):24787–24793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 31570079, 21276083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuedong Wang or Jian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3296 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhu, X., Wang, X. et al. Oxygen Bioavailability is a Rate-Limited Factor in Phytosterols Bioconversion Using a Cyclodextrin-Resting Cell System. Catal Lett 153, 1557–1563 (2023). https://doi.org/10.1007/s10562-022-04090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04090-4

Keywords

Navigation