Skip to main content
Log in

The Size and Doping Site Consideration in Methanol Synthesis on CuZr Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The conversion of CO2 to methanol (CH3OH) on Zr-doped Cu nanoparticle (NP) with icosahedral structure, is studied by density functional theory. The atom number of CuZr NPs is taken 13, 55 and 147, respectively and one Zr atom is doped at vertex (‘v’), edge (‘e’) or facet (‘f’) site on the CuZr NPs’ surfaces. The calculation results of the adsorption energies Eads of the concerned adsorbates, the activation energy Ea and the reaction energy (ΔE) at each reaction step, reflect the obvious influences of Zr doping site and the size of CuZr NPs on CO2 reduction activation. All the adsorption and reaction processes are found to perform around Zr atom, and except CO, the larger CuZr NP usually possesses the weaker adsorption for the adsorbates. On all the CuZr NPs, the rate determining step (RDS) occurs in the process of H3CO → CH3OH and the calculated Ea value at this step is found to be more closely related with Zr doping site. So, when Zr atom is doped at edge site on these CuZr NPs’ surfaces, the activation of CO2 is be well improved. Through comparing these CuZr NPs, Cu147Zre shows it’s better performance as the superior catalyst for CO2 reduction to CH3OH.

Graphical Abstract

The comparison of the energy barrier at the rate determining step (RDS) with a sequence in Ea values is Cu146Zre < Cu54Zre < Cu146Zrv < Cu54Zrv = Cu146Zrf < Cu12Zrv. The larger size of Cu nanoparticles or Zr doping at edge site on the surface of Cu nanoparticles will be in favor of enhancement in catalytic activation, and so Cu146Zre NP shows it’s superior catalytic properties in the reaction of CO2 conversion to CH3OH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495

    Article  Google Scholar 

  2. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639

    Article  CAS  Google Scholar 

  4. Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT (2013) Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: the source of C in methanol and the role of water. J Catal 298:10–17

    Article  CAS  Google Scholar 

  5. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567

    Article  CAS  Google Scholar 

  6. Beller M, Bolm C (2004) Transition metals for organic synthesis: building blocks and fine chemicals, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  7. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059

    Article  CAS  Google Scholar 

  8. Szanyi J, Goodman DW (1991) Methanol synthesis on a Cu(100) catalyst. Catal Lett 10:383–390

    Article  CAS  Google Scholar 

  9. Yang YX, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000). Phys Chem Chem Phys 12:9909–9917

    Article  CAS  PubMed  Google Scholar 

  10. Arakawa H, Dubois JL, Sayama K (1992) Selective conversion of CO2 to methanol by catalytic hydrogenation over promoted copper catalyst. Energy Convers Manag 33:521–528

    Article  CAS  Google Scholar 

  11. Kopac D, Likozar B, Hus M (2019) Catalysis of material surface defects: multiscale modeling of methanol synthesis by CO2 reduction on copper. Appl Surf Sci 497:143783

    Article  CAS  Google Scholar 

  12. Yoshihara J, Campbell CT (1996) Methanol synthesis and reverse water-gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J Catal 161:776–782

    Article  CAS  Google Scholar 

  13. Waugh KC (1992) Methanol synthesis. Catal Today 15:51–75

    Article  CAS  Google Scholar 

  14. Liu X, Lu G, Yan Z, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42:6518–6530

    Article  CAS  Google Scholar 

  15. Bansode A, Tidona B, von Rohr PR, Urakawa A (2013) Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure. Catal Sci Technol 3:767–778

    Article  CAS  Google Scholar 

  16. Guo X, Mao D, Lu G, Wang S, Wu G (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A: Chem 345:60–68

    Article  CAS  Google Scholar 

  17. Liu LN, Fan F, Jiang Z, Gao XF, Wei JJ, Fang T (2017) Mechanistic study of Pd-Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. J Phys Chem C 121:26287–26299

    Article  CAS  Google Scholar 

  18. Fujitani T, Nakamura I, Uchijima T, Nakamura J (1997) The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) surface. Surf Sci 383:285–298

    Article  CAS  Google Scholar 

  19. Samson K, Śliwa M, Socha RP, Góra-Marek K, Mucha D, Rutkowska-Zbik D, Paul JF, Ruggiero-Mikołajczyk M, Grabowski R, Słoczyński J (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4:3730–3741

    Article  CAS  Google Scholar 

  20. Amenomiya Y (1987) Methanol synthesis from CO2 + H2 II. Copperbased binary and ternary catalysts. Appl Catal 30:57–68

    Article  CAS  Google Scholar 

  21. Nitta Y, Fujimatsu T, Okamoto Y, Imanaka T (1993) Effect of starting salt on catalytic behaviour of Cu-ZrO2 catalysts in methanol synthesis from carbon dioxide. Catal Lett 17:157–165

    Article  CAS  Google Scholar 

  22. Liu LN, Su XY, Zhang H, Gao NJ, Xue F, Ma YJ, Jiang Z, Fang T (2020) Zirconia-modified copper catalyst for CO2 conversion to methanol from DFT study. Appl Surf Sci 528:146900

    Article  CAS  Google Scholar 

  23. Kattel S, Yan BH, Yang YX, Chen JGG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J Am Chem Soc 138:12440–12450

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Shen YY, Du HN, Li J, Zhang HX, Xu CX (2021) Insight into the mechanisms of CO2 reduction to CHO over Zr-doped Cu nanoparticle. Chem Phys 540:111012

    Article  CAS  Google Scholar 

  25. Austin N, Ye JY, Mpourmpakis G (2017) CO2 activation on Cu-based Zr-decorated nanoparticles. Catal Sci Technol 7:2245–2251

    Article  CAS  Google Scholar 

  26. Zhang X, Liu JX, Zijlstra B, Filot IAW, Zhou ZY, Sun SG, Hensen EJM (2018) Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 43:200–209

    Article  Google Scholar 

  27. Zhu W, Michalsky R, Metin O, Lv H, Guo S, Wright CJ, Sun X, Peterson AA, Sun S (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135:16833–16836

    Article  CAS  PubMed  Google Scholar 

  28. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  29. Delley B (2000) From molecules to solids with the Dmol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  31. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  32. Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab Initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  33. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125

    Article  Google Scholar 

  34. Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49:225–232

    Article  CAS  Google Scholar 

  35. Ou Z, Qin C, Niu J, Zhang L, Ran J (2019) A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts. Int J Hydrogen Energy 44:819–834

    Article  CAS  Google Scholar 

  36. Yang Y, White MG, Liu P (2012) Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J Phys Chem C 116:248–256

    Article  CAS  Google Scholar 

  37. Huš M, Dasireddy VDBC, Štefančič NS, Likozar B (2017) Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts. Appl Catal B: Environ 207:267–278

    Article  Google Scholar 

  38. Lee JH, Kattel S, Jiang Z, Xie Z, Yao S, Tackett BM, Xu W, Marinkovic NS, Chen JG (2019) Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat Commun 10:3724

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vasileff A, Xu C, Jiao Y, Zheng Y, Qiao S (2018) Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4:1–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Luan, X.S. & Shen, Y.Y. The Size and Doping Site Consideration in Methanol Synthesis on CuZr Nanoparticles. Catal Lett 153, 1036–1045 (2023). https://doi.org/10.1007/s10562-022-04041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04041-z

Keywords

Navigation