Skip to main content

Advertisement

Log in

S-Scheme α-Fe2O3/TiO2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H2 Production Activity and Stability

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, hematite with titanium dioxide (α-Fe2O3/TiO2) heterojunctions with palladium (Pd) nanoparticles were synthesised to improve efficiency of photocatalytic hydrogen production. α-Fe2O3 was loaded onto TiO2 surfaces, then Pd nanoparticles were deposited to make a ternary photocatalyst. The chemical composition, morphology and surface properties of photocatalytic ternary heterojunction were characterized by XRD, UV–Vis, FE-SEM, TEM, EDS, XPS techniques and BET analysis. The PL emission, transient photocurrent and EIS Nyquist plot were investigated for separation and migration of photogenerated charge carriers in photocatalyst nanocomposites. The average crystallite size of ternary α-Fe2O3/TiO2-Pd was 22 nm and its band gap energy was 2.00 eV, much lower than that of the pure TiO2 nanoparticles (3.16 eV). The α-Fe2O3/TiO2-Pd also has higher specific surface area and smaller EIS radius, which enhance interface activity and charge transfer. The α-Fe2O3/TiO2-Pd exhibited great performance, with H2 production rate of 3490.54 µmol h−1 g−1 and excellent stability in multi-cycle H2 production. The photocatalytic mechanism of α-Fe2O3/TiO2-Pd as explained by the S-scheme heterojunction is that the electron in the VB of α-Fe2O3 and TiO2 are transferred to CB of each photocatalyst. Then, the electrons in the CB of TiO2 are transferred to the VB of α-Fe2O3 and the photogenerated electrons in CB of α-Fe2O3 can migrate to Pd, which increase the redox ability for H2 production and increase the separation of photogenerated e–h+ pairs. Overall, the experimental results and theoretical analyses confirm the high potential for the applicability of the ternary photocatalysts for H2 production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bezdek RH (2019) The hydrogen economy and jobs of the future. Renew Energy Environ Sustain 4:1. https://doi.org/10.1051/rees/2018005

    Article  CAS  Google Scholar 

  2. Luo M, Yi Y, Wang S, Wang Z, Du M, Pan J, Wang Q (2018) Review of hydrogen production using chemical-looping technology. Renew Sustain Energy Rev 81:3186–3214. https://doi.org/10.1016/j.rser.2017.07.007

    Article  CAS  Google Scholar 

  3. Montini T, Monai M, Beltram A, Romero OI, Fornasiero P (2016) H2 production by photocatalytic reforming of oxygenated compounds using TiO2-based materials. Mater Sci Semicond Process 42:122–130. https://doi.org/10.1016/j.mssp.2015.06.069

    Article  CAS  Google Scholar 

  4. Melián EP, Díaz OG, Méndez AO, López CR, Suárez MN, Rodríguez JMD, Navío JA, Hevia DF, Peña JP (2013) Efficient and affordable hydrogen production by water photo-splitting using TiO2 based photocatalysts. Int J Hydrogen Energy 38:2144–2155. https://doi.org/10.1016/j.ijhydene.2012.12.005

    Article  CAS  Google Scholar 

  5. Safari F, Dincer I (2019) Development and analysis of a novel biomass based integrated system for multigeneration with hydrogen production. Int J Hydrogen Energy 44:3511–3526. https://doi.org/10.1016/j.ijhydene.2018.12.101

    Article  CAS  Google Scholar 

  6. Huang CW, Nguyen BS, Wu JCS, Nguyen VH (2019) A current perspective for photocatalysis towards the hydrogen production from biomass derived organic substances and water. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.08.121

    Article  Google Scholar 

  7. Wang Z, Roberts RR, Naterer GF, Gabriel KS (2012) Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar to hydrogen production technologies. Int J Hydrogen Energy 37:16287–16301. https://doi.org/10.1016/j.ijhydene.2012.03.057

    Article  CAS  Google Scholar 

  8. Atacan K, Güy N, Boutra B, Özacar M (2020) Enhancement of photoelectrochemical hydrogen production by using a novel ternary Ag2CrO4/GO/MnFe2O4 photocatalyst. Int J Hydrogen Energy 45:17453–17467. https://doi.org/10.1016/j.ijhydene.2020.04.268

    Article  CAS  Google Scholar 

  9. Habibi YA, Asadzadeh KS, Feizpoor S, Rouhi A (2020) Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? J Colloid Interface Sci 580:503–514. https://doi.org/10.1016/j.jcis.2020.07.047

    Article  CAS  Google Scholar 

  10. Asadzadeh KS, Habibi YA (2020) g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J Clean Prod 276:124319. https://doi.org/10.1016/j.jclepro.2020.124319

    Article  CAS  Google Scholar 

  11. Burgess G, Fernández VJG (2007) Materials, operational energy inputs, and net energy ratio for photobiological hydrogen production. Int J Hydrogen Energy 32:1225–1234. https://doi.org/10.1016/j.ijhydene.2006.10.055

    Article  CAS  Google Scholar 

  12. Qureshy AMMI, Ahmed M, Dincer I (2019) Performance assessment study of photoelectrochemical watersplitting reactor designs for hydrogen production. Int J Hydrogen Energy 44:9237–9247. https://doi.org/10.1016/j.ijhydene.2019.01.280

    Article  CAS  Google Scholar 

  13. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. https://doi.org/10.1039/c4cs00126e

    Article  CAS  PubMed  Google Scholar 

  14. Iglesias O, Rivero MJ, Urtiaga AM, Ortiz I (2016) Membrane based photocatalytic systems for process intensification. Chem Eng J 305:136–148. https://doi.org/10.1016/j.cej.2016.01.047

    Article  CAS  Google Scholar 

  15. Molinari R, Lavorato C, Argurio P (2015) Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts. Chem Eng J 274:307–316. https://doi.org/10.1016/j.cej.2015.03.120

    Article  CAS  Google Scholar 

  16. Güy N, Atacan K, Yıldırım İ, Özacar M (2021) Insight into the efficient photocatalytic removal mechanism of organic pollutants by plasmonic Z-scheme MoS2/Ag/Ag3VO4 heterojunction under visible light. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.115311

    Article  Google Scholar 

  17. Gan W, Zhang J, Niu H, Bao L, Hao H, Yan Y, Wu K, Fu X (2019) Fabrication of Ag/AgBr/TiO2 composites with enhanced solar-light photocatalytic properties. Colloids Surf A Physicochem Eng Asp 583:123968. https://doi.org/10.1016/j.colsurfa.2019.123968

    Article  CAS  Google Scholar 

  18. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44:540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  19. Li X, Lin H, Chen X, Niu H, Jiuyu L, Zhang T, Qu F (2016) Dendritic α-Fe2O3/TiO2 nanocomposites with improved visible light photocatalytic activity. Phys Chem Chem Phys 18:9176–9185. https://doi.org/10.1039/c5cp06681f

    Article  CAS  PubMed  Google Scholar 

  20. Rosman NN, Mohamad YR, Jeffery ML, Arifin K, Salehmin MNI, Mohamed MA, Kassim MB (2018) Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview. Int J Hydrogen Energy 43:18925–18945. https://doi.org/10.1016/j.ijhydene.2018.08.126

    Article  CAS  Google Scholar 

  21. Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photocatalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610. https://doi.org/10.1016/j.rser.2014.10.101

    Article  CAS  Google Scholar 

  22. Jafari T, Moharreri E, Amin AS, Miao R, Song W, Suib SL (2016) Photocatalytic water splitting - The untamed dream: a review of recent advances. Molecules 21:900. https://doi.org/10.3390/molecules21070900

    Article  CAS  PubMed Central  Google Scholar 

  23. Chiarello GL, Dozzi MV, Selli E (2017) TiO2 based materials for photocatalytic hydrogen production. J Energy Chem 26:250–258. https://doi.org/10.1016/j.jechem.2017.02.005

    Article  Google Scholar 

  24. Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B Environ 244:1021–1064. https://doi.org/10.1016/j.apcatb.2018.11.080

    Article  CAS  Google Scholar 

  25. Ismail AA, Bahnemann DW (2014) Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 128:85–101. https://doi.org/10.1016/j.solmat.2014.04.037

    Article  CAS  Google Scholar 

  26. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  27. Reza GM, Dinh CT, Béland F, Do TO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7:8187–8208. https://doi.org/10.1039/c4nr07224c

    Article  Google Scholar 

  28. Wei L, Yu C, Zhang Q, Liu H, Wang Y (2018) TiO2 based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J Mater Chem A 6:22411–22436. https://doi.org/10.1039/c8ta08879a

    Article  CAS  Google Scholar 

  29. Fawzi SKO, Palaniandy P (2020) Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: a review. Environ Technol Innov 21:101230. https://doi.org/10.1016/j.eti.2020.101230

    Article  CAS  Google Scholar 

  30. Mishra M, Chun DM (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A Gen 498:126–141. https://doi.org/10.1016/j.apcata.2015.03.023

    Article  CAS  Google Scholar 

  31. Li N, Tang S, Rao Y, Qi J, Wang P, Jiang Y, Huang H, Gu J, Yuan D (2018) Improved dye removal and simultaneous electricity production in a photocatalytic fuel cell coupling with persulfate activation. Electrochim Acta 270:330–338. https://doi.org/10.1016/j.electacta.2018.03.083

    Article  CAS  Google Scholar 

  32. Wu L, Yan H, Xiao J, Li X, Wang X, Zhao T (2017) Characterization and photocatalytic properties of nano-Fe2O3–TiO2 composites prepared through the gaseous detonation method. Ceram Int 43:14334–14339. https://doi.org/10.1016/j.ceramint.2017.07.189

    Article  CAS  Google Scholar 

  33. Madhumitha A, Preethi V, Kanmani S (2018) Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles. Int J Hydrogen Energy 43:3946–3956. https://doi.org/10.1016/j.ijhydene.2017.12.127

    Article  CAS  Google Scholar 

  34. Preethi V, Kanmani S (2014) Photocatalytic hydrogen production using Fe2O3 based core shell nano particles with ZnS and CdS. Int J Hydrogen Energy 39:1613–1622. https://doi.org/10.1016/j.ijhydene.2013.11.029

    Article  CAS  Google Scholar 

  35. Li X, Wang Z, Zhang Z, Chen L, Cheng J, Ni W, Wang B, Xie E (2015) Light illuminated α-Fe2O3/Pt nanoparticles as water activation agent for. Sci Rep 5:1–7. https://doi.org/10.1038/srep09130

    Article  Google Scholar 

  36. Yu L, Zhang Y, He J, Zhu H, Zhou X, Li M, Yang Q, Xu F (2018) Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting. J Alloys Compd 753:601–606. https://doi.org/10.1016/j.jallcom.2018.04.258

    Article  CAS  Google Scholar 

  37. Zhu S, Yao F, Yin C, Li Y, Peng W, Ma J, Zhang D (2014) Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation. Microporous Mesoporous Mater 190:10–16. https://doi.org/10.1016/j.micromeso.2014.01.018

    Article  CAS  Google Scholar 

  38. Huang R, Liang R, Fan H, Ying S, Wu L, Wang X, Yan G (2017) Enhanced photocatalytic fuel denitrification over TiO2/α-Fe2O3 nanocomposites under visible light irradiation. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-08439-3

    Article  CAS  Google Scholar 

  39. Xie Q, He W, Liu S, Li C, Zhang J, Wong PK (2020) Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin J Catal 41:140–153. https://doi.org/10.1016/S1872-2067(19)63481-9

    Article  CAS  Google Scholar 

  40. Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2 production photocatalyst. Appl Catal B Environ 243:556–565. https://doi.org/10.1016/j.apcatb.2018.11.011

    Article  CAS  Google Scholar 

  41. Zhu Y, Yang J, Bian C et al (2021) NiO decorated Ti/TiO2 nanotube arrays (TiO2NT)/TiO2/g-C3N4 step-scheme heterostructure thin film photocatalyst with enhanced photocatalytic activity for water splitting. Catal Lett 151:3067–3078. https://doi.org/10.1007/s10562-021-03545-4

    Article  CAS  Google Scholar 

  42. Hu T, Dai K, Zhang J, Chen S (2020) Noble metal free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Appl Catal B Environ 269:118844. https://doi.org/10.1016/j.apcatb.2020.118844

    Article  CAS  Google Scholar 

  43. Yan T, Liu H, Jin Z (2021) G-C3N4/α-Fe2O3 supported zero-dimensional CO3S4 nanoparticles form S-scheme heterojunction photocatalyst for efficient hydrogen production. Energy Fuels 35:856–867. https://doi.org/10.1021/acs.energyfuels.0c03351

    Article  CAS  Google Scholar 

  44. Zhao Z, Cheng DG, Chen F, Zhan X (2020) Hierarchical porous TS-1/Pd/CdS catalysts for enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy 45:33532–33542. https://doi.org/10.1016/j.ijhydene.2020.09.099

    Article  CAS  Google Scholar 

  45. Güy N (2020) Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl Surf Sci 522:146442. https://doi.org/10.1016/j.apsusc.2020.146442

    Article  CAS  Google Scholar 

  46. Ramírez OD, Guerrero AD, Acevedo PP, Lartundo RL, Zanella R (2020) Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction. J Mater Sci 55:16641–16658. https://doi.org/10.1007/s10853-020-05188-z

    Article  CAS  Google Scholar 

  47. Mahmoud MHH, Ismail AA, Sanad MMS (2012) Developing a cost effective synthesis of active iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chem Eng J 187:96–103. https://doi.org/10.1016/j.cej.2012.01.105

    Article  CAS  Google Scholar 

  48. Chuaicham C, Pawar RR, Karthikeyan S, Ohtani B, Sasaki K (2020) Fabrication and characterization of ternary sepiolite/g-C3N4/Pd composites for improvement of photocatalytic degradation of ciprofloxacin under visible light irradiation. J Colloid Interface Sci 577:397–405. https://doi.org/10.1016/j.jcis.2020.05.064

    Article  CAS  PubMed  Google Scholar 

  49. Peng L, Xie T, Lu Y, Fan H, Wang D (2010) Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys Chem Chem Phys 12:8033–8041. https://doi.org/10.1039/c002460k

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Tong R, Xu Z, Kuang Q, Xie Z, Zheng L (2016) Efficiently enhancing the photocatalytic activity of faceted TiO2 nanocrystals by selectively loading a-Fe2O3 and Pt co-catalysts. RSC Adv 6:29794–29801. https://doi.org/10.1039/c6ra04552a

    Article  CAS  Google Scholar 

  51. Khasawneh OFS, Palaniandy P, Palaniandy P, Ahmadipour M, Mohammadi H, Bin HMR (2021) Removal of acetaminophen using Fe2O3-TiO2 nanocomposites by photocatalysis under simulated solar irradiation: optimization study. J Environ Chem Eng 9:104921. https://doi.org/10.1016/j.jece.2020.104921

    Article  CAS  Google Scholar 

  52. Cao Z, Qin M, Gu Y, Jia B, Chen P, Qu X (2016) Synthesis and characterization of Sn-doped hematite as visible light photocatalyst. Mater Res Bull 77:41–47. https://doi.org/10.1016/j.materresbull.2016.01.004

    Article  CAS  Google Scholar 

  53. Topcu S, Jodhani G, Gouma PI (2016) Optimized nanostructured TiO2 photocatalysts. Front Mater 3:1–9. https://doi.org/10.3389/fmats.2016.00035

    Article  Google Scholar 

  54. Duo F, Wang Y, Mao X et al (2015) A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron hole separation and excellent photocatalytic performance. Appl Surf Sci 340:35–42. https://doi.org/10.1016/j.apsusc.2015.02.175

    Article  CAS  Google Scholar 

  55. Zolfaghari P, Khaledian HR, Aliasgharlou N, Khorram S, Karimi A, Khataee A (2019) Facile surface modification of immobilized rutile nanoparticles by non-thermal glow discharge plasma: effect of treatment gases on photocatalytic process. Appl Surf Sci 490:266–277. https://doi.org/10.1016/j.apsusc.2019.06.077

    Article  CAS  Google Scholar 

  56. Wang B, Li C, Cui H, Zhang J, Zhai J, Li Q (2013) Fabrication and enhanced visible-light photocatalytic activity of Pt-deposited TiO2 hollow nanospheres. Chem Eng J 223:592–603. https://doi.org/10.1016/j.cej.2013.03.052

    Article  CAS  Google Scholar 

  57. Bootluck W, Chittrakarn T, Techato K, Khongnakorn W (2021) Modification of surface α-Fe2O3/TiO2 photocatalyst nanocomposite with enhanced photocatalytic activity by Ar gas plasma treatment for hydrogen evolution. J Environ Chem Eng 9:105660. https://doi.org/10.1016/j.jece.2021.105660

    Article  CAS  Google Scholar 

  58. Ren D, Zhang W, Ding Y, Shen R, Jiang Z, Lu X, Li X (2020) In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D–2D step-scheme heterojunctions for highly active H2 evolution. Sol RRL 4:1–11. https://doi.org/10.1002/solr.201900423

    Article  CAS  Google Scholar 

  59. Haider Z, Kang YS (2014) Facile preparation of hierarchical TiO2 nano structures: growth mechanism and enhanced photocatalytic H2 production from water splitting using methanol as a sacrificial reagent. ACS Appl Mater Interfaces 6:10342–10352. https://doi.org/10.1021/am501796m

    Article  CAS  PubMed  Google Scholar 

  60. Jiang Q, Li I, Bi J, Liang S, Liu M (2017) Design and synthesis of TiO2 hollow spheres with spatially separated dual cocatalysts for efficient photocatalytic hydrogen production. Nanomaterials 7:24. https://doi.org/10.3390/nano7020024

    Article  CAS  PubMed Central  Google Scholar 

  61. Wu J, Lu S, Ge D, Zhang L, Chen W, Gu H (2016) Photocatalytic properties of Pd/TiO2 nanosheets for hydrogen evolution from water splitting. RSC Adv 6:67502–67508. https://doi.org/10.1039/c6ra10408h

    Article  CAS  Google Scholar 

  62. Liao CH, Huang CW, Wu JCS (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516. https://doi.org/10.3390/catal2040490

    Article  CAS  Google Scholar 

  63. Bhoi YP, Fang F, Zhou X, Li Y, Sun X, Wang J, Huang W (2020) Single step combustion synthesis of novel Fe2TiO5/α-Fe2O3/TiO2 ternary photocatalyst with combined double type-II cascade charge migration processes and efficient photocatalytic activity. Appl Surf Sci 525:146571. https://doi.org/10.1016/j.apsusc.2020.146571

    Article  CAS  Google Scholar 

  64. Mei Q, Zhang F, Wang N, Yang Y, Wu R, Wang W (2019) TiO2/Fe2O3 heterostructures with enhanced photocatalytic reduction of Cr(vi) under visible light irradiation. RSC Adv 9:22764–22771. https://doi.org/10.1039/c9ra03531a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lv YR, Liu CJ, He RK, Li X, Xu YH (2019) BiVO4/TiO2 heterojunction with enhanced photocatalytic activities and photoelectochemistry performances under visible light illumination. Mater Res Bull 117:35–40. https://doi.org/10.1016/j.materresbull.2019.04.032

    Article  CAS  Google Scholar 

  66. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782. https://doi.org/10.1260/0263617053499032

    Article  CAS  Google Scholar 

  67. Mohamed RM, Kadi MW, Ismail AA (2020) A Facile synthesis of mesoporous α-Fe2O3/TiO2 nanocomposites for hydrogen evolution under visible light. Ceram Int 46:15604–15612. https://doi.org/10.1016/j.ceramint.2020.03.107

    Article  CAS  Google Scholar 

  68. Dai X, Lu G, Hu Y, Xie X, Wang X, Sun J (2019) Reversible redox behavior of Fe2O3 /TiO2 composites in the gaseous photodegradation process. Ceram Int 45:13187–13192. https://doi.org/10.1016/j.ceramint.2019.03.255

    Article  CAS  Google Scholar 

  69. Fang X, Lu G, Mahmood A, Tang Z, Liu Z, Ln Z, Wang Y, Jing S (2020) A novel ternary Mica/TiO2/Fe2O3 composite pearlescent pigment for the photocatalytic degradation of acetaldehyde. J Photochem Photobiol A Chem 400:112617. https://doi.org/10.1016/j.jphotochem.2020.112617

    Article  CAS  Google Scholar 

  70. An M, Li L, Cao Y, Ma F, Liu D, Gu F (2019) Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance. Mol Catal 475:110482. https://doi.org/10.1016/j.mcat.2019.110482

    Article  CAS  Google Scholar 

  71. Zhou W, Fu H, Pan K, Tian C, Qu Y, Lu P, Sun CC (2008) Mesoporous TiO2/α-Fe2O3: bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J Phys Chem C 112:19584–19589. https://doi.org/10.1021/jp806594m

    Article  CAS  Google Scholar 

  72. Cheng Y, Guo H, Wang Y, Zhao Y, Li Y, Liu L, Hg Li, Duan H (2018) Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes. Mater Res Bull 105:21–27. https://doi.org/10.1016/j.materresbull.2018.04.025

    Article  CAS  Google Scholar 

  73. Zhang X, Lei L (2008) Preparation of photocatalytic Fe2O3 -TiO2 coatings in one step by metal organic chemical vapor deposition. Appl Surf Sci 254:2406–2412. https://doi.org/10.1016/j.apsusc.2007.09.067

    Article  CAS  Google Scholar 

  74. Pham MH, Dinh CT, Vuong GT, Ta ND, Do TO (2014) Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Phys Chem Chem Phys 16:5937–5941. https://doi.org/10.1039/c3cp54629b

    Article  CAS  PubMed  Google Scholar 

  75. Gao J, Jiang R, Wang J, Wang B, Li K, Pi K, Li Y, Zhang X (2011) Sonocatalytic performance of Er3+:YAlO3/TiO2-Fe2O3 in organic dye degradation. Chem Eng J 168:1041–1048. https://doi.org/10.1016/j.cej.2011.01.079

    Article  CAS  Google Scholar 

  76. Wang Y, Yu J, Li Q (2014) Microwave-assisted hydrothermal synthesis of graphene based Au – TiO2 photocatalysts for e ffi cient visible-light hydrogen production. J Mater Chem. https://doi.org/10.1039/c3ta14908k

    Article  Google Scholar 

  77. Sayed FN, Sasikala R, Jayakumar OD, Rao R, Betty CA, Chokkalingam A, Kadam RM, Jagannath J, Bharadwaj SR, Vinu A, Tyagi AK (2014) Photocatalytic hydrogen generation from water using a hybrid of graphene nanoplatelets and self doped TiO2-Pd. RSC Adv 4:13469–13476. https://doi.org/10.1039/c3ra47974a

    Article  CAS  Google Scholar 

  78. Xu Q, Lg Z, Cheng B, Fan Ji YuJ (2020) S-scheme heterojunction photocatalyst. Chem 6:1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010

    Article  CAS  Google Scholar 

  79. Liu J, Yang S, Wu W, Tian Q, Sn C, Dai Z, Ren F, Xiao X, Jiang C (2015) 3D flowerlike α-Fe2O3@TiO2 core-shell nanostructures: general synthesis and enhanced photocatalytic performance. ACS Sustain Chem Eng 3:2975–2984. https://doi.org/10.1021/acssuschemeng.5b00956

    Article  CAS  Google Scholar 

  80. Ge H, Xu F, Cheng B, Yu J, Ho W (2019) S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 11:6301–6309. https://doi.org/10.1002/cctc.201901486

    Article  CAS  Google Scholar 

  81. Xie MY, Su KY, Peng XY, Wu RJ, Chavali M, Chang WC (2017) Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under visible light. J Taiwan Inst Chem Eng 70:161–167. https://doi.org/10.1016/j.jtice.2016.10.034

    Article  CAS  Google Scholar 

  82. Xu Q, Ma D, Yang S, Tian Z, Cheng B, Fan J (2019) Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Appl Surf Sci 495:143555. https://doi.org/10.1016/j.apsusc.2019.143555

    Article  CAS  Google Scholar 

  83. Zhang H, Liu F, Wu H, Cao X, Sun J, Lei W (2017) In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Adv 7:40327–40333. https://doi.org/10.1039/c7ra06786k

    Article  CAS  Google Scholar 

  84. Chem JM, Martha S, Das DP, Biswal N, Parida KM (2012) Photocatalyst : enhanced hydrogen production and phenol degradation. J Mater Chem 5:10695–10703. https://doi.org/10.1039/c2jm30462g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research study was financially supported by the Inter-disciplinary Graduate School of Energy Systems (IGS-Energy), Graduate School of Prince of Songkla University and the Center of Excellence in Membrane Science and Technology, Prince of Songkla University. This work was partially conducted under the research on development of novel technologies for safe agriculture by Faculty of Engineering, Khon Kaen University which has received funding support from Fundamental Fund 2022 (the National Science, Research and Innovation Fund (NSRF), Thailand). The authors were grateful thanks Assoc. Prof. Seppo Karrila and Publication Clinic, Research and Develop Office for English proved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Watsa Khongnakorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bootluck, W., Chittrakarn, T., Techato, K. et al. S-Scheme α-Fe2O3/TiO2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H2 Production Activity and Stability. Catal Lett 152, 2590–2606 (2022). https://doi.org/10.1007/s10562-021-03873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03873-5

Keywords

Navigation