Skip to main content

Advertisement

Log in

NiO Decorated Ti/TiO2 Nanotube Arrays (TiO2NT)/TiO2/g-C3N4 Step-Scheme Heterostructure Thin Film Photocatalyst with Enhanced Photocatalytic Activity for Water Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new strategy to enhance the photocatalytic properties of graphitic carbon nitride is reported via constructing an effective NiO decorated Ti/TiO2NT/TiO2/g-C3N4 S-scheme heterostructure photocatalyst thin film (Ti/TiO2NT/TiO2/g-C3N4/NiO). This thin film photocatalyst can separate hydrogen gas and oxygen gas into different sides of the Ti substrate. Owing to the synergistic effect of the NiO as co-catalyst and the formation of Step-scheme (S-scheme) heterojunction between g-C3N4 and TiO2, the electrons and holes were successfully separated to their opposing active centers, which is beneficial to inhibiting the recombination of the charge carriers. The gas evolution rate of Ti/TiO2NT/TiO2/g-C3N4/NiO is 7.97 μmol h−1 cm−2 under the irradiation of high-pressure mercury lamp, which was 3 and 1.3 times as high as that of the Ti/TiO2NT/g-C3N4 and Ti/TiO2NT/TiO2/g-C3N4, respectively. Firstly, benefiting from the well-matched band structure, a direct S-scheme Ti/TiO2NT/g-C3N4 heterojunction thin film is constructed easily driven by the built-in electric field across the Ti/TiO2NT/g-C3N4 interface. Furthermore, the introduction of the TiO2 layer on the TiO2NT will broaden light absorption range and increase the heterojunction area, which in turn conduces to effective charge separation. In addition, NiO as a co-catalyst cannot only accelerate the charge separation but also provide plentiful catalytic sites and decompose H2O2 produced by g-C3N4. The thin film photocatalysts can be recycled again, which is different from traditional powdered photocatalysts. This work constructs a NiO decorated Ti/TiO2NT/TiO2/g-C3N4 S-scheme heterostructure photocatalyst thin film, and provides a new insight to promote photocatalytic activity of g-C3N4 under the synergetic impact of S-scheme heterostructure and NiO co-catalyst.

Graphic Abstract

A novel NiO decorated Ti/TiO2NT/TiO2/g-C3N4 S-scheme heterostructure photocatalyst thin film was fabricated to enhance photocatalytic activity for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li G, Lian Z, Wang W, Zhang D, Li H (2016) Nano Energy 19:446–454

    Article  CAS  Google Scholar 

  2. He J, Chen L, Wang F, Liu Y, Chen P, Au C-T, Yin S-F (2016) Chemsuschem 9(6):624–630

    Article  CAS  PubMed  Google Scholar 

  3. Hou H, Gao F, Wang L, Shang M, Yang Z, Zheng J, Yang W (2016) J Mater Chem A 4(17):6276–6281

    Article  CAS  Google Scholar 

  4. Tan Y, Shu Z, Zhou J, Li T, Wang W, Zhao Z (2018) Appl Catal B 230:260–268

    Article  CAS  Google Scholar 

  5. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) Renew Sustain Energy Rev 11(3):401–425

    Article  CAS  Google Scholar 

  6. Tian H, Shen K, Hu X, Qiao L, Zheng W (2017) J Alloys Compd 691:369–377

    Article  CAS  Google Scholar 

  7. Tian H, Wan C, Zheng W, Hu X, Qiao L, Wang X (2016) RSC Adv 6(88):84722–84729

    Article  CAS  Google Scholar 

  8. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Nature 414(6864):625–627

    Article  CAS  PubMed  Google Scholar 

  9. Yu J, Yu Y, Zhou P, Xiao W, Cheng B (2014) Appl Catal B 156:184–191

    Article  CAS  Google Scholar 

  10. Li X, Dong H, Wang B, Lv J, Xu G, Wang D, Wu Y (2018) Catal Lett 148(11):3445–3453

    Article  CAS  Google Scholar 

  11. Song X, Shen W, Sun Z, Yang C, Zhang P, Gao L (2016) Chem Eng J 290:74–81

    Article  CAS  Google Scholar 

  12. Cui C, Li S, Qiu Y, Hu H, Li X, Li C, Gao J, Tang W (2017) Appl Catal B 200:666–672

    Article  CAS  Google Scholar 

  13. Cao S, Yu J (2014) J Phys Catal Lett 5(12):2101–2107

    CAS  Google Scholar 

  14. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8(1):76–80

    Article  CAS  PubMed  Google Scholar 

  15. Ge J, Jiang D, Zhang L, Du P (2018) Catal Lett 148(12):3741–3749

    Article  CAS  Google Scholar 

  16. Jiang W, Luo W, Wang J, Zhang M, Zhu Y (2016) J Photochem Photobiol C 28:87–115

    Article  CAS  Google Scholar 

  17. Chava RK, Do J, Kang M (2019) Appl Catal B 248:538–551

    Article  CAS  Google Scholar 

  18. Tian H, Liu M, Zheng W (2018) Appl Catal B 225:468–476

    Article  CAS  Google Scholar 

  19. Shen Y, Guo X, Bo X, Wang Y, Guo X, Xie M, Guo X (2017) Appl Surf Sci 396:933–938

    Article  CAS  Google Scholar 

  20. Tan S, Xing Z, Zhang J, Li Z, Wu X, Cui J, Kuang J, Yin J, Zhou W (2017) Int J Hydrogen Energy 42(41):25969–25979

    Article  CAS  Google Scholar 

  21. Zhang J-W, Gong S, Mahmood N, Pan L, Zhang X, Zou J-J (2018) Appl Catal B 221:9–16

    Article  CAS  Google Scholar 

  22. Gao J, Wang J, Qian X, Dong Y, Xu H, Song R, Yan C, Zhu H, Zhong Q, Qian G, Yao J (2015) J Solid State Chem 228:60–64

    Article  CAS  Google Scholar 

  23. Hong Y, Li C, Fang Z, Luo B, Shi W (2017) Carbon 121:463–471

    Article  CAS  Google Scholar 

  24. Wu X, Gao D, Wang P, Yu H, Yu J (2019) Carbon 153:757–766

    Article  CAS  Google Scholar 

  25. Wang R, Yan J, Zu M, Yang S, Cai X, Gao Q, Fang Y, Zhang S, Zhang S (2018) Electrochim Acta 279:74–83

    Article  CAS  Google Scholar 

  26. Bian J, Xi L, Huang C, Lange KM, Zhang R-Q, Shalom M (2016) Adv Energy Mater 6(12):1600263

    Article  CAS  Google Scholar 

  27. Xu J, Cao S, Brenner T, Yang X, Yu J, Antonietti M, Shalom M (2015) Adv Funct Mater 25(39):6265–6271

    Article  CAS  Google Scholar 

  28. Zhang W, Albero J, Xi L, Lange KM, Garcia H, Wang X, Shalom M (2017) ACS Appl Mater Interfaces 9(38):32667–32677

    Article  CAS  PubMed  Google Scholar 

  29. Qi F, Li Y, Wang Y, Wang Y, Liu S, Zhao X (2016) RSC Adv 6(84):81378–81385

    Article  CAS  Google Scholar 

  30. Huang M, Zhao Y-L, Xiong W, Kershaw SV, Yu Y, Li W, Dudka T, Zhang R-Q (2018) Appl Catal B 237:783–790

    Article  CAS  Google Scholar 

  31. Jia Q, Zhang S, Gao Z, Yang P, Gu Q (2019) Catal Sci Technol 9(2):425–435

    Article  CAS  Google Scholar 

  32. Peng G, Xing L, Barrio J, Volokh M, Shalom M (2018) Angew Chem Int Ed 57(5):1186

    Article  CAS  Google Scholar 

  33. Peng G, Albero J, Garcia H, Shalom M (2018) Angew Chem Int Ed 57(48):15807–15811

    Article  CAS  Google Scholar 

  34. Li K, Zeng X, Gao S, Ma L, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2016) Nano Res 9(7):1969–1982

    Article  CAS  Google Scholar 

  35. Li K, Huang Z, Zeng X, Huang B, Gao S, Lu J (2017) ACS Appl Mater Interfaces 9(13):11577–11586

    Article  CAS  PubMed  Google Scholar 

  36. Li Z, Liu Z, Li B, Li D, Ge C, Fang Y (2016) J Mater Sci Mater Electron 27(3):2904–2913

    Article  CAS  Google Scholar 

  37. Wang L, Tong Y, Feng J, Hou J, Li J, Hou X, Liang J (2019) Sustain Mater Technol 19:e00089

    CAS  Google Scholar 

  38. Liu C, Wang F, Zhang J, Wang K, Qiu Y, Liang Q, Chen Z (2018) Nano-Micro Lett 10(2):37

    Article  CAS  Google Scholar 

  39. Sun M, Fang Y, Kong Y, Sun S, Yu Z, Umar A (2016) Dalton Trans 45(32):12702–12709

    Article  CAS  PubMed  Google Scholar 

  40. Yan D, Wu X, Pei J, Wu C, Wang X, Zhao H (2020) Ceram Int 46(1):696–702

    Article  CAS  Google Scholar 

  41. Xu Q, Zhang L, Cheng B, Fan J, Yu J (2020) Chem 6(7):1543–1559

    Article  CAS  Google Scholar 

  42. Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Appl Catal B 243:556–565

    Article  CAS  Google Scholar 

  43. He F, Meng A, Cheng B, Ho W, Yu J (2020) Chin J Catal 41(1):9–20

    Article  CAS  Google Scholar 

  44. Liu Y, Gong Z, Lv H, Ren H, Xing X (2020) Appl Surf Sci 526:146734

    Article  CAS  Google Scholar 

  45. Wang Y, Ma Q, Zhu M, Liu B, Wang Y, Yuan H, Wang X, Peng X (2020). Catal Lett. https://doi.org/10.1007/s10562-020-03431-5

    Article  Google Scholar 

  46. Lim H, Kim JY, Evans EJ, Rai A, Kim J-H, Wygant BR, Mullins CB (2017) ACS Appl Mater Interfaces 9(36):30654–30661

    Article  CAS  PubMed  Google Scholar 

  47. Malara F, Minguzzi A, Marelli M, Morandi S, Psaro R, Dal Santo V, Naldoni A (2015) ACS Catal 5(9):5292–5300

    Article  CAS  Google Scholar 

  48. Wang L, Mitoraj D, Turner S, Khavryuchenko OV, Jacob T, Hocking RK, Beranek R (2017) ACS Catal 7(7):4759–4767

    Article  CAS  Google Scholar 

  49. Zhao X, Zhao X, Ullah I, Gao L, Zhang J, Lu J (2020). Catal Lett. https://doi.org/10.1007/s10562-020-03426-2

    Article  Google Scholar 

  50. Zhang H, Tian W, Guo X, Zhou L, Sun H, Tade MO, Wang S (2016) ACS Appl Mater Interfaces 8(51):35203–35212

    Article  CAS  PubMed  Google Scholar 

  51. Yang W, Zhu G, Wang J, Feng S, Yang J, Su P, Fu W, Yang H (2019) Catal Lett 149(6):1680–1689

    Article  CAS  Google Scholar 

  52. Fu Y, Liu C, Zhu C, Wang H, Dou Y, Shi W, Shao M, Huang H, Liu Y, Kang Z (2018) Inorg Chem Front 5(7):1646–1652

    Article  CAS  Google Scholar 

  53. Liu J, Jia Q, Long J, Wang X, Gao Z, Gu Q (2018) Appl Catal B 222:35–43

    Article  CAS  Google Scholar 

  54. Li X, Yao H, Lv P, Ding D, Liu L, Zhu G, Fu W, Yang H (2016) Curr Appl Phys 16(9):1144–1151

    Article  Google Scholar 

  55. Wu Y, Wang H, Tu W, Liu Y, Tan YZ, Yuan X, Chew JW (2018) J Hazard Mater 347:412–422

    Article  CAS  PubMed  Google Scholar 

  56. Xu J, Herraiz-Cardona I, Yang X, Gimenez S, Antonietti M, Shalom M (2015) Adv Opt Mater 3(8):1052–1058

    Article  CAS  Google Scholar 

  57. Boonprakob N, Wetchakun N, Phanichphant S, Waxler D, Sherrell P, Nattestad A, Chen J, Inceesungvorn B (2014) J Colloid Interface Sci 417:402–409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Yang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yang, J., Bian, C. et al. NiO Decorated Ti/TiO2 Nanotube Arrays (TiO2NT)/TiO2/g-C3N4 Step-Scheme Heterostructure Thin Film Photocatalyst with Enhanced Photocatalytic Activity for Water Splitting. Catal Lett 151, 3067–3078 (2021). https://doi.org/10.1007/s10562-021-03545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03545-4

Keywords

Navigation