Skip to main content
Log in

Revealing the Correlation Between Surface Acid Sites and Activity of VPO/TiO2 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, the acid sites on the surface of the catalyst were quantitatively analyzed by pyridine adsorption infrared spectroscopy. When the molar ratio of V/P is 5, the molar ratio of HCl/V is 3, and the calcination temperature is 450 °C, the selective catalytic reduction effect of NO over VPO/TiO2 catalyst is the best (up to 99% at 200 °C), and the acidity of the catalyst is the highest, which is 5600 μmol·g−1. The results showed that the SCR activity of VPO/TiO2 catalyst increased with the increase of acidity at low temperature. Furthermore, the correlation between the denitration activity and the surface acid level was established by means of data fitting. The results showed that the low temperature denitrification activities of all VPO/TiO2 catalysts were positively correlated with the content of weak Lewis acid center (correlation coefficient > 0.9). In conclusion, this study provides a new method for analyzing the structure–activity relationship of the catalyst and provides some theoretical basis for the design of NH3-SCR catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao G, Shi J-W, Liu C et al (2017) Appl Surf Sci 411:338–346

    Article  CAS  Google Scholar 

  2. Lian Z, Deng H, Xin S et al (2021) Chem Commun 57(3):355–358

    Article  CAS  Google Scholar 

  3. Li Y, Wan Y, Li Y et al (2016) ACS Appl Mater Interfaces 8(8):5224–5233

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Dong Y, Zou R et al (2021) Catal Lett 151:2795

    Google Scholar 

  5. You X, Sheng Z, Yu D et al (2017) Appl Surf Sci 423:845–854

    Article  CAS  Google Scholar 

  6. Yao X, Zhao R, Chen L et al (2017) Appl Catal B 208:82–93

    Article  CAS  Google Scholar 

  7. Li L, Zhang L, Ma K et al (2017) Appl Catal B 207:366–375

    Article  CAS  Google Scholar 

  8. Gao F, Tang X, Yi H et al (2018) Appl Surf Sci 443:103–113

    Article  CAS  Google Scholar 

  9. Huang Z, Liu Z, Zhang X et al (2006) Appl Catal B 63(3):260–265

    Article  CAS  Google Scholar 

  10. Jiang B, Liu Y, Wu Z (2009) J Hazard Mater 162(2):1249–1254

    Article  CAS  PubMed  Google Scholar 

  11. Wang C, Sun L, Cao Q et al (2011) Appl Catal B 101(3):598–605

    Article  CAS  Google Scholar 

  12. Wang L, Huang B, Su Y et al (2012) Chem Eng J 192:232–241

    Article  CAS  Google Scholar 

  13. Liu C, Shi J-W, Gao C et al (2016) Appl Catal A 522:54–69

    Article  CAS  Google Scholar 

  14. Marbán G, Fuertes AB (2002) Catal Lett 84(1):13–19

    Article  Google Scholar 

  15. Qu Z, Miao L, Wang H et al (2015) Chem Commun 51(5):956–958

    Article  CAS  Google Scholar 

  16. Jia Y, Yang J, Jiang J et al (2019) Front Mater 6(320):69–81

    Google Scholar 

  17. Kalevaru VN, Madaan N, Martin A (2011) Appl Catal A 391(1):52–62

    Article  CAS  Google Scholar 

  18. Feng X, Yao Y, Su Q et al (2015) Appl Catal B 164:31–39

    Article  CAS  Google Scholar 

  19. Busca G, Centi G, Trifiro F et al (1986) J Phys Chem 90(7):1337–1344

    Article  CAS  Google Scholar 

  20. Jia Y, Zhang S, Gu M et al (2019) Res Chem Intermed 45(5):2695–2713

    Article  CAS  Google Scholar 

  21. Jia Y, Yang J, Jiang J et al (2021) Catal Commun 153:106299

    Article  CAS  Google Scholar 

  22. Yang S, Qi F, Liao Y et al (2014) Ind Eng Chem Res 53(14):5810–5819

    Article  CAS  Google Scholar 

  23. Yang S, Qi F, Xiong S et al (2016) Appl Catal B 181:570–580

    Article  CAS  Google Scholar 

  24. Yang S, Wang C, Li J et al (2011) Appl Catal B 110:71–80

    Article  CAS  Google Scholar 

  25. Chen T, Guan B, Lin H et al (2014) Chin J Catal 35(3):294–301

    Article  CAS  Google Scholar 

  26. Yu C, Huang B, Dong L et al (2017) Catal Today 281:610–620

    Article  CAS  Google Scholar 

  27. Cha W, Ehrman SH, Jurng J (2016) J Environ Chem Eng 4(1):556–563

    Article  CAS  Google Scholar 

  28. Qu R, Gao X, Cen K et al (2013) Appl Catal B 142–143:290–297

    Article  CAS  Google Scholar 

  29. Peng Y, Li K, Li J (2013) Appl Catal B 140–141:483–492

    Article  CAS  Google Scholar 

  30. Lian Z, Wei J, Shan W et al (2021) J Am Chem Soc 143(27):10454–10461

    Article  CAS  PubMed  Google Scholar 

  31. Shan W, Liu F, He H et al (2012) Appl Catal B 115–116:100–106

    Article  CAS  Google Scholar 

  32. Busca G, Lietti L, Ramis G et al (1998) Appl Catal B 18(1):1–36

    Article  CAS  Google Scholar 

  33. Peña DA, Uphade BS, Smirniotis PG (2004) J Catal 221(2):421–431

    Article  CAS  Google Scholar 

  34. Pârvulescu VI, Boghosian S, Pârvulescu V et al (2003) J Catal 217(1):172–185

    Google Scholar 

  35. Saleh RY, Wachs IE, Chan SS et al (1986) J Catal 98(1):102–114

    Article  CAS  Google Scholar 

  36. Zhang T, Zhang Y, Ning P et al (2021) Appl Surf Sci 538:147999

    Article  CAS  Google Scholar 

  37. Rownaghi AA, Taufiq-Yap YH, Rezaei F (2009) Ind Eng Chem Res 48(16):7517–7528

    Article  CAS  Google Scholar 

  38. Feng X, Sun B, Yao Y et al (2014) J Catal 314:132–141

    Article  CAS  Google Scholar 

  39. Guliants VV, Benziger JB, Sundaresan S et al (1996) Catal Today 28(4):275–295

    Article  CAS  Google Scholar 

  40. Hutson JM, Beswick JA, Halberstadt N (1989) J Chem Phys 90(3):1337–1344

    Article  CAS  Google Scholar 

  41. Yang M (2017) Shenyang Normal University (in Chinese). pp 57–58

  42. Chen W-H, Ko H-H, Sakthivel A et al (2006) Catal Today 116(2):111–120

    Article  CAS  Google Scholar 

  43. Makarova MA, Karim K, Dwyer J (1995) Microporous Mater 4(2):243–246

    Article  CAS  Google Scholar 

  44. Parry EP (1963) J Catal 2(5):371–379

    Article  CAS  Google Scholar 

  45. Emeis CA (1993) J Catal 141(2):347–354

    Article  CAS  Google Scholar 

  46. Farneth WE, Gorte RJ (1995) Chem Rev 95(3):615–635

    Article  CAS  Google Scholar 

  47. Weitkamp J (1991). In: Öhlmann G, Pfeifer H, Fricke R (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 21–46

    Google Scholar 

  48. Wang X, Huang D, Yue J et al (2020) Mod Chem Ind 40(4):124–128 (in Chinese)

    Google Scholar 

  49. Bond GC, Tahir SF (1991) Appl Catal 71(1):1–31

    Article  CAS  Google Scholar 

  50. Duan Y, Song Z, Zhang Q et al (2016) J Fuel Chem Technol 44(10):1259–1265

    CAS  Google Scholar 

  51. Fang N, Guo J, Shu S et al (2018) J Taiwan Inst Chem Eng 93:277–288

    Article  CAS  Google Scholar 

  52. Ramis G, Busca G, Lorenzelli V et al (1990) Appl Catal 64:243–257

    Article  CAS  Google Scholar 

  53. Takagi M, Kawai T, Soma M et al (1977) J Catal 50(3):441–446

    Article  CAS  Google Scholar 

  54. Sun D, Liu Q, Liu Z et al (2009) Appl Catal B 92(3):462–467

    Article  CAS  Google Scholar 

  55. Ettireddy PR, Ettireddy N, Boningari T et al (2012) J Catal 292:53–63

    Article  CAS  Google Scholar 

  56. Si Z, Weng D, Wu X et al (2010) J Rare Earths 28(5):727–731

    Article  CAS  Google Scholar 

  57. Topsoe NY, Topsoe H, Dumesic JA (1995) J Catal 151(1):226–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major national R & D projects of China (2017YFB0601805), Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (KJ2020A0236, KJ2019A0079) and the Key Laboratory of Metallurgical Emission Reduction & Resources Recycling by Ministry of Education at Anhui University of Technology (JKF20-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Guo or Yiqing Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Huang, M., Yuan, J. et al. Revealing the Correlation Between Surface Acid Sites and Activity of VPO/TiO2 Catalyst. Catal Lett 152, 2215–2226 (2022). https://doi.org/10.1007/s10562-021-03794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03794-3

Keywords

Navigation