Skip to main content
Log in

Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the correlation between vanadium surface density and VOx structure species in the selective catalytic reduction of NOx by NH3. The properties of the VOx/TiO2 catalysts were investigated using physicochemical measurements, including BET, XRD, Raman spectroscopy, FE-TEM, UV-visible DRS, NH3-TPD, H2-TPR, O2-On/Off. Catalysts were prepared using the wet impregnation method by supporting 1.0-3.0 wt% vanadium on TiO2 thermally treated at various calcination temperatures. Through the above analysis, we found that VOx surface density was 3.4 VOx/nm2, and the optimal V loading amounts were 2.0-2.5 wt% and the specific surface area was 65-80m2/g. In addition, it was confirmed that the optimal VOx surface density and formation of vanadium structure species correlated with the reaction activity depending on the V loading amounts and the specific surface area size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Qi and R. T. Yang, J. Catal., 217, 434 (2003).

    Article  CAS  Google Scholar 

  2. P. Granger and V. I. Parvulescu, Chem. Rev., 111, 3155 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Z. Liu and S. I. Woo, Catal. Rev. Sci. Eng., 48, 43 (2006).

    Article  CAS  Google Scholar 

  4. F. Cavani, C. Cortelli, A. Frattini, B. Panzacchi, V. Ravaglia, F. Trifirò, C. Fumagalli, R. Leanza and G. Mazzoni, Catal. Today, 118, 298 (2006).

    Article  CAS  Google Scholar 

  5. U. G. Nielsen, N.–Y. Topsøe, M. Brorson, J. Skibsted and H. J. Jakobsen, J. Am. Chem. Soc., 126, 4926 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. A. Bellifa, D. Lahcene, Y. N. Tchenar, A. Choukchou–Braham, R. Bachir, S. Bedrane and C. Kappenstein, Appl. Catal. A: Gen., 305, 1 (2006).

    Article  CAS  Google Scholar 

  7. Z. Liu, S. Zhang, J. Li, J. Zhu and L. Ma, Appl. Catal. B: Environ., 158–159, 11 (2014).

  8. F. Giraud, C. Geantet, N. Guihaume, S. Loridant, S. Gros, L. Porcheron, M. Kanniche and D. Bianchi, J. Phys. Chem. C, 119, 15401 (2015).

    Article  CAS  Google Scholar 

  9. I. Georgiadou, Ch. Papadopoulou, H. K. Matralis, G. A. Voyiatzis, A. Lycourghiotis and Ch. Kordulis, J. Phys. Chem. B, 102, 8459 (1998).

    Article  CAS  Google Scholar 

  10. J. P. Balikdjian, A. Davidson, S. Launay, H. Eckert and M. Che, J. Phys. Chem. B, 104, 8931 (2000).

    Article  CAS  Google Scholar 

  11. D. Srinivas, W. F. Hölderich, S. Kujath, M. H. Valkenberg, T. Raja, L. Saikia, R. Hinze and V. Ramaswamy, J. Catal., 259, 165 (2008).

    Article  CAS  Google Scholar 

  12. I. Giakoumelou, C. Fountzoula, C. Kordulis and S. Boghosian, J. Catal., 239, 1 (2006).

    Article  CAS  Google Scholar 

  13. F. Tang, K. Zhuang, F. Yang, L. Yang, B. Xu, J. Qiu and Y. Fan, Chin. J. Catal., 33, 933 (2012).

    Article  CAS  Google Scholar 

  14. Z. Wu, V. Schwartz, M. Li, A. J. Rondinone and S. H. Overbury, J. Phys. Chem. Lett., 3, 1517 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. L. Lietti, I. Nova and P. Forzatti, Top. Catal., 11–12, 111 (2000).

    Google Scholar 

  16. Y. Peng, C. Wang and J. Li, Appl. Catal. B: Environ., 144, 538 (2014).

    Article  CAS  Google Scholar 

  17. M. A. Bañares, L. J. Alemany, M. C. Jiménez, M. A. Larrubia, F. Delgado, M. L. Granados, A. Martinez–Arias and J. M. Blasco, J. Solid State Chem., 124, 69 (1996).

    Article  Google Scholar 

  18. I. E. Wachs, Catal. Today, 27, 437 (1996).

    Article  CAS  Google Scholar 

  19. J. Engweiler, J. Harf and A. Baiker, J. Catal., 159, 259 (1996).

    Article  CAS  Google Scholar 

  20. M. Kobayashi and K. Miyoshi, Appl. Catal. B: Environ., 72, 253 (2007).

    Article  CAS  Google Scholar 

  21. G. D. Panagiotou, T. Petsi, K. Bourikas, C. Kordulis and A. Lycourghiotis, J. Catal., 262, 266 (2009).

    Article  CAS  Google Scholar 

  22. R. D. Shannon and J. A. Pask, J. Amer. Cer. Soc., 48, 391 (2006).

    Article  Google Scholar 

  23. D. A. Bulushev, L. Kiwi–Minsker, F. Rainone and A. Renken, J. Catal., 205, 115 (2002).

    Article  CAS  Google Scholar 

  24. G. Busca, J. Raman Spec., 33, 348 (2002).

    Article  CAS  Google Scholar 

  25. M. A. Bañares and I. E. Wachs, J. Raman Spec., 33, 359 (2002).

    Article  CAS  Google Scholar 

  26. G. T. Went, S. T. Oyama and A. T. Bell, J. Phys. Chem., 94, 4240 (1990).

    Article  CAS  Google Scholar 

  27. A. Christodoulakis, M. Machli, A. A. Lemonidou and S. Boghosian, J. Catal., 222, 293 (2004).

    Article  CAS  Google Scholar 

  28. J. Engweiler, J. Harf and A. Baiker, J. Catal., 159, 259 (1996).

    Article  CAS  Google Scholar 

  29. M. Kobayashi and K. Miyoshi, Appl. Catal. B: Environ., 72, 253 (2007).

    Article  CAS  Google Scholar 

  30. G. D. Panagiotou, T. Petsi, K. Bourikas, C. Kordulis and A. Lycourghiotis, J. Catal., 262, 266 (2009).

    Article  CAS  Google Scholar 

  31. R. Bulánek, L. Čapek, M. Setnička and P. Čičmanec, J. Phys. Chem. C, 115, 12430 (2011).

    Article  CAS  Google Scholar 

  32. N. Moussa and A. Ghorbel, Appl. Surf. Sci., 255, 2270 (2008).

    Article  CAS  Google Scholar 

  33. G. Catana, R. R. Rao, B. M. Weckhuysen, P. Van Der Voort, E. Vansant and R. A. Schoonheydt, J. Phys. Chem. B, 102, 8005 (1998).

    Article  CAS  Google Scholar 

  34. D. Wei, H. Wang, X. Feng, W. T. Chueh, P. Ravikovitch, M. Lyubovsky, C. Li, T. Takeguchi and G. L. Haller, J. Phys. Chem. B, 103, 2113 (1999).

    Article  CAS  Google Scholar 

  35. J. M. Miller and L. J. Lakshmi,J. Mol. Catal. A Chem., 144, 451 (1999).

    Article  CAS  Google Scholar 

  36. J. Due–Hansen, S. B. Rasmussen, E. Mikolajska, M. A. Bañares, P. Ávila and R. Fehrmann, Appl. Catal. B: Environ., 107, 340 (2011).

    Article  CAS  Google Scholar 

  37. E. C. Alyea, L. J. Lakshmi and Z. Ju, Langmuir, 13, 5621 (1997).

    Article  CAS  Google Scholar 

  38. D. W. Kwon, K. H. Park and S. C. Hong, Appl. Catal. A Gen., 499, 1 (2015).

    Article  CAS  Google Scholar 

  39. P. G. W. A. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler and W. Grünert, J. Catal., 286, 237 (2012).

    Article  CAS  Google Scholar 

  40. S. Meiqing, L. Chenxu, W. Jianqiang, X. Lili, W. Wulin and W. Jun, RSC Adv., 5, 35155 (2015).

    Article  CAS  Google Scholar 

  41. R. R. Kumar, K. N. Rao, K. Rajanna and A. R. Phani, Mater. Lett., 106, 164 (2013).

    Article  CAS  Google Scholar 

  42. M. M. Salman, P. A. Kumar and H. H. Phil, Appl. Catal. B: Environ., 152–153, 28 (2014).

    Google Scholar 

  43. Z. Hun, H. Weiliang, L. Gongxuan, L. Jiangyin, T. Zhicheng and Z. Xinping, Appl. Surf. Sci., 379, 316 (2016).

    Article  CAS  Google Scholar 

  44. L. G. Pinaeva, A. P. Suknev, A. A. Budneva, E. A. Paukshtis and B. S. Bal’zhinimaev, J. Catal., 193, 145 (2000).

    Article  CAS  Google Scholar 

  45. L. Lietti, G. Ramis, F. Berti, G. Toledo, D. Robba, G. Busca and P. Forzatti, Catal. Today, 42, 101 (1998).

    Article  CAS  Google Scholar 

  46. B. E. Handy, A. Baiker, M. Schraml–Marth and A. Wokaun, J. Catal., 133, 1 (1992).

    Article  CAS  Google Scholar 

  47. S. Martinez, R. Morales, M. G. C. Galindo, A. G. Rodriguez and B. E. Handy, Thermochim. Acta., 434, 74 (2005).

    Article  CAS  Google Scholar 

  48. A. J. Shi, X. Q. Wang, T. Yu and M. Q. Shen, Appl. Catal. B, 106, 359 (2011).

    Article  CAS  Google Scholar 

  49. C. Z. Wang, S. J. Yang, H. Z. Chang, Y. Peng and J. H. Li, Chem. Eng. J., 225, 520 (2013).

    Article  CAS  Google Scholar 

  50. C. Z. Sun, L. H. Dong, W. J. Yu, L. C. Liu, H. Li, F. Gao, L. Dong and Y. Chen, J. Mol. Catal. A, 346, 29 (2011).

    Article  CAS  Google Scholar 

  51. F. Roozeboom, M. C. Mittelmeijer–Hazeleger, J. A. Moulijn, J. Medema, V. H. J. De Beer and P. H. J. Gellings, J. Phys. Chem., 84, 2783 (1980).

    Article  CAS  Google Scholar 

  52. S. S. R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A. D. Jensen and R. Fehrmann, Appl. Catal. B, 183, 282 (2016).

    Article  CAS  Google Scholar 

  53. C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, Chem. Eng. J., 225, 520 (2013).

    Article  CAS  Google Scholar 

  54. L. Lietti, P. Forzatti and F. Bregani, Ind. Eng. Chem. Res., 35, 3884 (1996).

    Article  CAS  Google Scholar 

  55. M. D. Amiridis, I. E. Wachs, G. Deo, J. M. Jeng and D. S. Kim, J. Catal., 161, 247 (1996).

    Article  CAS  Google Scholar 

  56. N. Y. Topsøe, M. Anstrom and J. A. Dumesic, Catal. Lett., 76, 11 (2001).

    Article  Google Scholar 

  57. M. Inomata, A. Miyamoto and Y. Murakami, J. Catal., 62, 140 (1980).

    Article  CAS  Google Scholar 

  58. A. Miyamoto, Y. Yamazaki, M. Inomata and Y. Kurakami, J. Phys. Chem., 85, 2366 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Chang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J.M., Kim, M.S. & Hong, S.C. Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3. Korean J. Chem. Eng. 35, 2365–2378 (2018). https://doi.org/10.1007/s11814-018-0158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0158-x

Keywords

Navigation