Skip to main content
Log in

DFT and experimental study on denitration mechanism over VPO/TiO2 catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A titanium dioxide supported VPO(VPO/TiO2) catalyst for NH3-SCR de-NOx was prepared. The NH3-SCR catalytic activity of VPO/TiO2 was tested and a corresponding mechanism was investigated by Density Functional Theory and in situ FTIR spectra. The results showed that the catalytic activity of VPO/TiO2 was the highest when the molar ratio of P to V was 1/5, weight percentage of active ingredient was 10 wt.% and calcination temperature was 400 °C. The de-NOx efficiency of 0.1VP(1/5)O/TiO2 calcined at 400 °C was above 98% at temperature range from 180 to 400 °C. The V2P2O15H12 cluster was constructed and the adsorption of NO and NH3 on the active site of VPO/TiO2 was investigated by density functional theory (DFT). The simulation results showed that NO could be chemisorbed on the O2 and O3 site of the V2P2O15H12 cluster, and the corresponding adsorption energy was − 74.95 kJ·mol−1 and − 47.30 kJ·mol−1 respectively. The adsorption energy of NH3 adsorption on O1, O2 and O3 site is − 95.88 kJ·mol−1, − 230.80 kJ·mol−1 and − 78.45 kJ·mol−1. Moreover, the electric charge transformation of H on O2 site is 0.589e, which is higher than that on O1 and O3 site. Accordingly, the NH3-SCR de-NOx reaction would occur more easily on the O2 site than on the O1 and O3 site. The simulated results and the in situ FTIR spectra showed that the reduction of NO by NH3 over VPO/TiO2 followed the E–R mechanism and L–H mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Zhang, R. Zhang, X. Chen, Ind. Eng. Chem. Res. 53(15), 6450 (2014)

    Article  CAS  Google Scholar 

  2. L. Kanimozhi, A. Arvind, Int. J. Eng. Sci. 2(1), 66 (2017)

    Google Scholar 

  3. Y. Wang, Y. Shen, S. Zhu, Catal. Commun. 94, 29 (2017)

    Article  CAS  Google Scholar 

  4. Y. He, M.E. Ford, M. Zhu, Appl. Catal. B 193, 141 (2016)

    Article  CAS  Google Scholar 

  5. Y.J. Kim, H.J. Kwon, I. Heo, Appl. Catal. B 126(38), 9 (2012)

    Article  CAS  Google Scholar 

  6. C. Tang, H. Zhang, L. Dong, Catal. Sci. Technol. 6(5), 1248 (2016)

    Article  CAS  Google Scholar 

  7. M. Kong, Q. Liu, B. Zhu, Chem. Eng. J. 264(2), 815 (2015)

    Article  CAS  Google Scholar 

  8. W. Chen, J. Luo, L. Qin, J. Environ. Manag. 164, 146 (2015)

    Article  CAS  Google Scholar 

  9. L. Yan, Y. Liu, H. Hu, Chemcatchem 8(13), 2267 (2016)

    Article  CAS  Google Scholar 

  10. H. Zhou, J. Chen, M. Zhou, Appl. Therm. Eng. 115, 378 (2016)

    Article  CAS  Google Scholar 

  11. X. Liu, J. Li, X. Li, Chin. J. Catal. 37(6), 878 (2016)

    Article  CAS  Google Scholar 

  12. L. Gan, F. Guo, J. Yu, Catalysts 6(2), 25 (2016)

    Article  CAS  Google Scholar 

  13. W. Cha, S.H. Ehrman, J. Jurng, J. Environ. Chem. Eng. 4(1), 556 (2016)

    Article  CAS  Google Scholar 

  14. C.L. Yu, B.C. Huang, L.F. Dong, Catal. Today 281, 610 (2017)

    Article  CAS  Google Scholar 

  15. H. Schneider, M. Maciejewski, K. Kohler, J. Catal. 157, 312 (1995)

    Article  CAS  Google Scholar 

  16. G. Ramis, L. Yi, G. Busca, Catal. Today 28(4), 373 (1996)

    Article  CAS  Google Scholar 

  17. C. Santra, S. Shah, A. Mondal, Micropor. Mesopor. Mater. 223, 121 (2016)

    Article  CAS  Google Scholar 

  18. L. Arnarson, H. Falsig, S.B. Rasmussen, Phys. Chem. Chem. Phys. 18(25), 17071 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. M. Gruber, K. Hermann, J. Chem. Phys. 139(24), 194701 (2013)

    Article  CAS  Google Scholar 

  20. M. Calatayud, B. Mguig, Surf. Sci. Rep. 55(6), 169 (2004)

    CAS  Google Scholar 

  21. A. Vittadini, M. Casarin, M. Sambi, J. Phys. Chem. B 109(46), 21766 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. G. Busca, G. Centi, F. Trifiro, J. Phys. Chem. 90(7), 1337 (1986)

    Article  CAS  Google Scholar 

  23. G.C. Bond, S.F. Tahir, Appl. Catal. 71(1), 1 (1991)

    Article  CAS  Google Scholar 

  24. J.B. Benziger, V. Guliants, S. Sundaresan, Catal. Today 33(1–3), 49 (1997)

    Article  CAS  Google Scholar 

  25. X. Feng, Y. Yao, S. Qin, Appl. Catal. B 164(164), 31 (2015)

    Article  CAS  Google Scholar 

  26. M. HaVecker, A. Knop-Gericke, R.W. Mayer, J. Electron. Spectrosc. 125(2), 79 (2002)

    Article  CAS  Google Scholar 

  27. A.W. Sleight, P.T. Nguyen, Mater. Res. Bull. 30(9), 1055 (1995)

    Article  Google Scholar 

  28. T. Okuhara, M. Misono, Catal. Today 16(1), 61 (1993)

    Article  CAS  Google Scholar 

  29. J.W. Johnson, D.C. Johnston, A.J. Jacobson, Stud. Surf. Sci. Catal. 31, 181 (1987)

    Article  CAS  Google Scholar 

  30. Z. Yan, Z. Zuo, Z. Li, Appl. Surf. Sci. 321, 339 (2014)

    Article  CAS  Google Scholar 

  31. J.P. Perdew, Y. Wang, Phys. Rev. B Condens. Matter Mater. Phys. 45(23), 13244 (1992)

    Article  CAS  Google Scholar 

  32. J.G. Yu, J.C. Yu, B. Cheng, J. Solid State Chem. 174(2), 372 (2003)

    Article  CAS  Google Scholar 

  33. S. Damyanova, C.A. Perez, M. Schmal, Appl. Catal. A Gen. 234(1–2), 271 (2002)

    CAS  Google Scholar 

  34. J.P. Chen, R.T. Yang, J. Catal. 139(1), 277 (1993)

    Article  CAS  Google Scholar 

  35. T. Tsumuraya, T. Shishidou, T. Oguchi, J. Alloys Compd. 446(5), 323 (2007)

    Article  CAS  Google Scholar 

  36. X. Duan, G. Qian, C. Fan, Surf. Sci. 606(3–4), 549 (2012)

    Article  CAS  Google Scholar 

  37. M. Takagikawai, M. Soma, T. Onishi, Can. J. Chem. 58(20), 2132 (2011)

    Article  Google Scholar 

  38. M. Takagi, T. Kawai, M. Soma, J. Catal. 50(3), 441 (1977)

    Article  CAS  Google Scholar 

  39. V.I. Pârvulescu, P. Grange, B. Delmon, Catal. Today 46(4), 233 (1998)

    Article  Google Scholar 

  40. H. Demir, A. Top, D. Balköse, J. Hazard. Mater. 153(1–2), 389 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. M. Inomata, A. Miyamoto, Y. Murakami, J. Catal. 62(1), 140 (1980)

    Article  CAS  Google Scholar 

  42. C.U.I. Odenbrand, L.A.H. Andersson, J.G.M. Brandin, Appl. Catal. 27(2), 363 (1986)

    Article  CAS  Google Scholar 

  43. M. Gasior, J. Haber, T. Machej, J. Mol. Catal. 43(3), 359 (1988)

    Article  CAS  Google Scholar 

  44. K.I. Hadjiivanov, Catal. Rev. 42(1–2), 71 (2000)

    Article  CAS  Google Scholar 

  45. M.A. Centeno, I. Carrizosa, J.A. Odriozola, Appl. Catal. B Environ. 29(4), 307 (2001)

    Article  CAS  Google Scholar 

  46. V.I. Parvulescu, S. Boghosiam, V. Parvulescu, S.M. Jung, J. Catal. 217(1), 172 (2003)

    CAS  Google Scholar 

  47. L. Chen, J. Li, M. Ge, Environ. Sci. Technol. 44(24), 9590 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major national R & D projects of China (2017YFB0601805) and National Natural Science Foundation of China (51674002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Zhang or Mingyan Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Zhang, S., Gu, M. et al. DFT and experimental study on denitration mechanism over VPO/TiO2 catalyst. Res Chem Intermed 45, 2695–2713 (2019). https://doi.org/10.1007/s11164-019-03758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03758-8

Keywords

Navigation