Skip to main content
Log in

Mn0.3Cd0.7S Nanorods Modified by Amorphous FexP with Improved Photocatalytic Activity and Stability for H2 Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, a novel amorphous FexP was successfully synthesized and anchored onto the surface of Mn0.3Cd0.7S nanorods by a mild solvothermal technology. FexP/Mn0.3Cd0.7S-0.2 composite exhibited the highest H2 production of 31.42 mmol g−1 h−1, which was 766.34-fold higher than that of Mn0.3Cd0.7S. Amorphous FexP was used as an effective cocatalyst and electron collector to provide reaction sites for H2 evolution, accelerate the transfer of e, and hinder the recombination of carriers, thus significantly improving the catalytic activity and stability of FexP/Mn0.3Cd0.7S.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu YP, Li YH, Li XY, Zhang Q, Yu H, Peng XW, Peng F (2020) Regulating electron-hole separation to promote photocatalytic H2 evolution activity of nanoconfined Ru/MXene/TiO2 catalysts. ACS Nano 14:14181–14189

    Article  CAS  PubMed  Google Scholar 

  2. Wang B, Chen CX, Jiang YY, Ni PJ, Zhang CH, Yang Y, Lu YZ, Liu P (2021) Rational designing 0D/1D Z-scheme heterojunction on CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Chem Eng J 412:128690

    Article  CAS  Google Scholar 

  3. Zhang Z, Huang L, Zhang J, Wang F, Xie Y, Shang X, Gu Y, Zhao H, Wang X (2018) In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl Catal B 233:112–119

    Article  CAS  Google Scholar 

  4. Han CC, Su PF, Tan BH, Ma XG, Lv H, Huang CY, Wang P, Tong ZF, Li G, Huang YZ, Liu ZF (2021) Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity. J Colloid Interface Sci 581:159–166

    Article  CAS  PubMed  Google Scholar 

  5. Tahir MB, Rafique M, Isa Khan M, Majid A, Nazar F, Sagir M, Gilani S, Farooq M, Ahmed A (2018) Enhanced photocatalytic hydrogen energy production of g-C3N4-WO3 composites under visible light irradiation. Int J Energy Res 42:4667–4673

    Article  CAS  Google Scholar 

  6. Dan M, Xiang JL, Yang J, Wu F, Han CQ, Zhong YQ, Zheng KB, Yu S, Zhou Y (2021) Beyond hydrogen production: Solar-driven H2S-donating value-added chemical production over MnxCd1−xS/CdyMn1−yS catalyst. Appl Catal B 284:119706

    Article  CAS  Google Scholar 

  7. Li CY, Fu M, Wang Y, Liu EZ, Fan J, Hu XY (2020) In situ synthesis of Co2P-decorated red phosphorus nanosheets for efficient photocatalytic H2 evolution. Catal Sci Technol 10:2221–2230

    Article  CAS  Google Scholar 

  8. Yang PS, Yang YP, Jiang L, He J, Chen DM, Chen YJ, Wang JQ (2021) Signifcantly enhanced photocatalytic hydrogen evolution under visible light over LaCoO3-decorated cubic/hexagonal Mn0.25Cd0.75S. Catal Lett 37:2010059

    Google Scholar 

  9. Ikeue K, Shiiba S, Machida M (2010) Novel visible-light-driven photocatalyst based on Mn-Cd-S for efficient H2 evolution. Chem Mater 22:743–745

    Article  CAS  Google Scholar 

  10. Qi YQ, Qi SP, Tan L, Liu GN, Yang JF, Li BN, Lou YB, Chen JX, Zhao YX (2020) Partial Cu ion exchange induced triangle hexagonal Mn0.45Cu0.05Cd0.5S nanocrystals for enhanced photocatalytic hydrogen evolution. Chem Commun 56:8127–8130

    Article  CAS  Google Scholar 

  11. Wang J, Luo J, Liu D, Chen S, Peng T (2019) One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl Catal B 241:130–140

    Article  CAS  Google Scholar 

  12. Wang J, Chen J, Wang P, Hou J, Wang C, Ao Y (2018) Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl Catal B 239:578–585

    Article  CAS  Google Scholar 

  13. Dai D, Xu H, Ge L, Han C, Gao Y, Li S, Lu Y (2017) In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Appl Catal B 217:429–436

    Article  CAS  Google Scholar 

  14. Zhao H, Sun S, Jiang P, Xu ZJ (2017) Graphitic C3N4 modified by Ni2P cocatalyst: an efficient, robust and low cost photocatalyst for visible-light-driven H2 evolution from water. Chem Eng J 315:296–303

    Article  CAS  Google Scholar 

  15. Huang QZ, Tao ZJ, Ye LQ, Yao HC, Li ZJ (2018) Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl Catal B 237:689–698

    Article  CAS  Google Scholar 

  16. Han YL, Chen Y, Fan RL, Li ZS, Zou ZG (2021) Promotion effect of metal phosphides towards electrocatalytic and photocatalytic water splitting. EcoMat 3:e12097

    Article  CAS  Google Scholar 

  17. Li XH, Xu J, Li LJ, Zhao S, Mao M, Liu ZY, Li YR (2021) Construction of amorphous CoS/CdS nanoparticles heterojunctions for visible-light-driven photocatalytic H2 evolution. Catal Lett 151:2408–2419

    Article  CAS  Google Scholar 

  18. Wulan B, Yi S, Li S, Duan Y, Yan J, Jiang Q (2018) Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting. Appl Catal B 231:43–50

    Article  CAS  Google Scholar 

  19. Han YL, Dong XF, Liang ZB (2019) Synthesis of MnxCd1-xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production. Catal Sci Technol 9:1427–1436

    Article  CAS  Google Scholar 

  20. Wen J, Xie J, Zhang H, Zhang A, Liu Y, Chen X, Li X (2017) Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation. ACS Appl Mater Interfaces 9:14031–14042

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Wang X, Yu H, Yu J (2018) Direct photoinduced synthesis of amorphous CoMoSx cocatalyst and its improved photocatalytic H2-evolution activity of CdS. ACS Sustain Chem Eng 6:12436–12445

    Article  CAS  Google Scholar 

  22. Han YL, Liang ZB, Dang HF, Dong XF (2018) Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn0.1S p-n heterojunction photocatalyst under visible light irradiation. J Taiwan Inst Chem E 87:196–203

    Article  CAS  Google Scholar 

  23. Aoki A (1976) X-ray photoelectron spectroscopic studies on ZnS: MnF2 phosphors. Jpn J Appl Phys 15:305–311

    Article  CAS  Google Scholar 

  24. Zhang H, Dong Y, Zhao S, Wang G, Jiang P, Zhong J, Zhu Y (2020) Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl Catal B 261:118233

    Article  CAS  Google Scholar 

  25. Reddy CV, Shim J, Cho M (2017) Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles. J Phys Chem S 103:209–217

    Article  CAS  Google Scholar 

  26. Li S, Wang L, Xiao N, Wang A, Li X, Gao Y, Li N, Song W, Ge L, Liu J (2019) In-situ synthesis of ternary metal phosphides NixCo1-xP decorated Zn0.5Cd0.5S nanorods with significantly enhanced photocatalytic hydrogen production activity. Chem Eng J 378:122220

    Article  CAS  Google Scholar 

  27. Yin XL, Li LL, Jiang JH, Du XX, Pang DH, Yang J, Li ZJ, Wang YX, Li XY, Li DC, Dou JM (2019) Noble-metal-free Zn0.5Cd0.5S@MoS2 core@shell heterostructures for visible-light-driven H2 evolution with enhanced efficiency and stability. Chem Eng J 375:121970

    Article  CAS  Google Scholar 

  28. Sun Z, Zhu M, Lv X, Liu Y, Shi C, Dai Y, Wang A, Majima T (2019) Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation. Appl Catal B 246:330–336

    Article  CAS  Google Scholar 

  29. Hongo T, Iemura T, Yamazaki A (2008) Adsorption ability for several harmful anions and thermal behavior of Zn-Fe layered double hydroxide. J Ceram Soc Jpn 116:192–197

    Article  CAS  Google Scholar 

  30. Zeng D, Zhou T, Ong WJ, Wu M, Duan X, Xu W, Chen Y, Zhu YA, Peng DL (2019) Sub-5 nm ultra-fine FeP nanodots as efficient Co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces 11:5651–5660

    Article  CAS  PubMed  Google Scholar 

  31. Wei X, Zhang Y, He H, Peng L, Xiao S, Yao S, Xiao P (2019) Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chem Commun 55:10896–10899

    Article  CAS  Google Scholar 

  32. Shao Z, Qi H, Wang X, Sun J, Guo N, Huang K, Wang Q (2019) Boosting oxygen evolution by surface nitrogen doping and oxygen vacancies in hierarchical NiCo/NiCoP hybrid nanocomposite. Electrochim Acta 296:259–267

    Article  CAS  Google Scholar 

  33. Zheng W, Feng W, Zhang X, Chen X, Liu G, Qiu Y, Hasan T, Tan P, Hu PA (2016) Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv Funct Mater 26:2648–2654

    Article  CAS  Google Scholar 

  34. Yang Z, Lu L, Berard VF, He Q, Kiely CJ, Berger BW, McIntosh S (2015) Biomanufacturing of CdS quantum dots. Green Chem 17:3775–3782

    Article  CAS  Google Scholar 

  35. Wang M, Liu Q, Xu N, Su N, Wang X, Su W (2018) An amorphous CoSx modified Mn0.5Cd0.5S solid solution with enhanced visible-light photocatalytic H2-production activity. Catal Sci Technol 8:4122–4128

    Article  CAS  Google Scholar 

  36. Yuan J, Wen J, Gao Q, Chen S, Li J, Li X, Fang Y (2015) Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity. Dalton Trans 44:1680–1689

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Tang C, Zheng Q, Shao Y, Li D (2017) Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. J Solid State Chem 246:230–236

    Article  CAS  Google Scholar 

  38. Cheng L, Xie S, Zou Y, Ma D, Sun D, Li Z, Wang Z, Shi JW (2019) Noble-metal-free Fe2P-Co2P co-catalyst boosting visible-light-driven photocatalytic hydrogen production over graphitic carbon nitride: the synergistic effects between the metal phosphides. Int J Hydrogen Energy 44:4133–4142

    Article  CAS  Google Scholar 

  39. Liang ZB, Dong XF, Han YL, Geng JM (2019) In-situ growth of 0D–2D Ni2P quantum dots-red phosphorus nanosheets with p-n heterojunction for efficient photocatalytic H2 evolution under visible light. Appl Surf Sci 484:293–299

    Article  CAS  Google Scholar 

  40. Chen W, Yan R, Zhu J, Huang G, Chen Z (2020) Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl Surf Sci 504:144406

    Article  CAS  Google Scholar 

  41. Ge L, Han C, Xiao X, Guo L (2013) In situ synthesis of cobalt-phosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities. Appl Catal B 142–3:414–422

    Article  CAS  Google Scholar 

  42. Liu X, Liu Q, Wang P, Liu Y, Huang B, Rozhkova EA, Zhang Q, Wang Z, Dai Y, Lu J (2018) Efficient photocatalytic H2 production via rational design of synergistic spatially-separated dual cocatalysts modified Mn0.5Cd0.5S photocatalyst under visible light irradiation. Chem Eng J 337:480–487

    Article  CAS  Google Scholar 

  43. Li C, Du S, Wang H, Naghadeh SB, Allen AL, Lin X, Li G, Liu Y, Xu H, He C, Zhang JZ, Fang P (2019) Enhanced visible-light-driven photocatalytic hydrogen generation using NiCo2S4/CdS nanocomposites. Chem Eng J 378:122089

    Article  CAS  Google Scholar 

  44. Shen R, Xie J, Zhang H, Zhang A, Chen X, Li X (2017) Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy. ACS Sustain Chem Eng 6:816–826

    Article  CAS  Google Scholar 

  45. Zhu C, Liu CA, Fu Y, Gao J, Huang H, Liu Y, Kang Z (2019) Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl Catal B 242:178–185

    Article  CAS  Google Scholar 

  46. Ning X, Zhen W, Zhang X, Lu G (2019) Assembly of ultra-thin NiO layer Over Zn1-xCdxS for stable visible-light photocatalytic overall water splitting. Chemsuschem 12:1410–1420

    Article  CAS  PubMed  Google Scholar 

  47. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X (2019) In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B 268:118382

    Article  CAS  Google Scholar 

  48. Yue X, Yi S, Wang R, Zhang Z, Qiu S (2016) A novel and highly efficient earth-abundant Cu3P with TiO2 “P-N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale 8:17516–17523

    Article  CAS  PubMed  Google Scholar 

  49. Di T, Zhu B, Zhang J, Cheng B, Yu J (2016) Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Appl Surf Sci 389:775–782

    Article  CAS  Google Scholar 

  50. Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J (2015) CdS/graphene nanocomposite photocatalysts. Adv Energy Mater 5:1500010

    Article  CAS  Google Scholar 

  51. Liao LB, Zhang QH, Su ZH, Zhao ZZ, Wang YN, Li Y, Lu XX, Wei DG, Feng GY, Yu QK, Cai XJ, Zhao JM, Ren ZF, Fang H, Robles-Hernandez F, Baldelli S, Bao JM (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol 9:69–73

    Article  CAS  PubMed  Google Scholar 

  52. Guo F, Shi WL, Wang HB, Han MM, Li H, Huang H, Liu Y, Kang ZH (2017) Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol 7:3325–3331

    Article  CAS  Google Scholar 

  53. Han YL, Zhang Q, Liang ZB, Geng JM, Dong XF (2020) Mn0.3Cd0.7S nanorods modified with NiS clusters as photocatalysts for the H2 evolution reaction. J Mater Sci 55:5390–5401

    Article  CAS  Google Scholar 

  54. Tang Y, Zhang D, Qiu X, Zeng L, Huang B, Li H, Pu X, Geng Y (2019) Fabrication of a NiCo2O4/Zn0.1Cd0.9S p-n heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution. J Alloy Compd 809:151855

    Article  CAS  Google Scholar 

  55. Yin S, Han J, Zou Y, Zhou T, Xu RA (2016) highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale 8:14438–14447

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Li B, Chen J, Li N, Zheng J, Zhao J, Zhu Z (2012) Enhanced photocatalytic H2-production activity of CdxZn1-xS nanocrystals by surface loading MS (M=Ni Co, Cu) species. Appl Surf Sci 259:118–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was subsidized by the National Natural Science Foundation of China (21978098) and the Natural Science Foundation of Guangdong Province, China (2020A1515010488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfa Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Dong, X. Mn0.3Cd0.7S Nanorods Modified by Amorphous FexP with Improved Photocatalytic Activity and Stability for H2 Evolution. Catal Lett 152, 1660–1668 (2022). https://doi.org/10.1007/s10562-021-03758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03758-7

Keywords

Navigation