Skip to main content
Log in

Efficient Methanol-to-Olefins Conversion Via Photothermal Effect Over TiN/SAPO-34 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

As one of the most promising routes for production of low-carbon olefins (e.g., ethene and propene etc.), methanol-to-olefins (MTO) reaction is influenced largely by the temperature. Noble metal (e.g., Au, Ag, etc.) nanoparticles are known to exhibit the localized surface plasmon resonance (LSPR) effect, which has been applied in photothermal reactions. Owing to the increased light absorption ability in near-infrared region, titanium nitride (TiN) nanoparticles exhibit a superior LSPR effect over noble metals. Herein, we report on the MTO reaction via photothermal effect over a series of TiN(x)/SAPO-34 (x = 0.5, 0.75, 1, 2, 5, 10, 13 wt%) catalysts prepared by a simple mechanical grinding method. The MTO reaction over TiN(x)/SAPO-34 was carried out under a 300 W xenon lamp irradiation. The MTO reactivity of TiN(x)/SAPO-34 was influenced by both the photothermal temperature from the LSPR effect of TiN nanoparticles and the Brønsted acid sites on SAPO-34, both of which were dependent on the loading amount of TiN nanopartiles. The synergistic effect of high photothermal temperature, sufficient Brønsted acid sites and moderate BET surface area gave rise to the optimal catalytic performance of MTO reaction over TiN(10)/SAPO-34, which exhibited a methanol conversion of 73.1% and an ethene selectivity of 62.5%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stöcker M (1999) Microporous Mesoporous Mater 29:3

    Article  Google Scholar 

  2. Sedighi M, Keyvanloo K (2014) Front Chem Sci Eng 8:306

    Article  CAS  Google Scholar 

  3. Yang M, Fan D, Wei Y, Tian P, Liu Z (2019) Adv Mater 31:1902181

    Article  CAS  Google Scholar 

  4. Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922

    Article  CAS  Google Scholar 

  5. Fierro JLG (1993) Catal Lett 22:67

    Article  CAS  Google Scholar 

  6. Inui T, Matsuda H, Yamase O, Nagata H, Fukuda K, Ukawa T, Miyamoto A (1986) J Catal 98:491

    Article  CAS  Google Scholar 

  7. Zhu Z, Hartmann M, Kevan L (2000) Chem Mater 12:2781

    Article  CAS  Google Scholar 

  8. Nazari M, Moradi G, Behbahani RM, Ghavipour M, Abdollahi S (2015) Catal Lett 145:1893

    Article  CAS  Google Scholar 

  9. Liu H, Kianfar E (2021) Catal Lett 151:787

    Article  CAS  Google Scholar 

  10. Dahl IM, Mostad H, Akporiaye D, Wendelbo R (1999) Microporous Mesoporous Mater 29:185

    Article  CAS  Google Scholar 

  11. Campo AESD, Gayubo AG, Aguayo AT, Tarrío A, Bilbao J (1998) Ind Eng Chem Res 37:2336

    Article  Google Scholar 

  12. Niekerk MJV, Fletcher JCQ, O’Connor CT (1996) Appl Catal A 138:135

    Article  Google Scholar 

  13. Travalloni L, Gomes ACL, Gaspar AB, Silva MAPD (2008) Catal Today 133–135:406

    Article  CAS  Google Scholar 

  14. Chen D, Moljord K, Fuglerud T, Holmen A (1999) Microporous Mesoporous Mater 29:191

    Article  CAS  Google Scholar 

  15. Wilson S, Barger P (1999) Microporous Mesoporous Mater 29:117

    Article  CAS  Google Scholar 

  16. Popova M, Minchev C, Kanazirev V (1998) Appl Catal A 169:227

    Article  CAS  Google Scholar 

  17. Froment GF, Dehertog WJH, Marchi AJ (1992) In: Spivey JJ (ed) Catalysis, vol. 9. The Royal Society of Chemistry, Cambridge, p1

  18. Bahrami H, Darian JT, Sedighi M (2018) Microporous Mesoporous Mater 261:111

    Article  CAS  Google Scholar 

  19. Craighead HG, Niklasson GA (1984) Appl Phys Lett 44:1134

    Article  CAS  Google Scholar 

  20. Yan M, Dai J, Qiu M (2014) J Opt 16:025002

    Article  CAS  Google Scholar 

  21. Clavero C (2014) Nat Photonics 8:95

    Article  CAS  Google Scholar 

  22. Hutter E, Fendler JH (2004) Adv Mater 16:1685

    Article  CAS  Google Scholar 

  23. Barhoumi A, Huschka R, Bardhan R, Knight MW, Halas NJ (2009) Chem Phys Lett 482:171

    Article  CAS  Google Scholar 

  24. Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urtti A (2007) J Control Release 122:86

    Article  CAS  PubMed  Google Scholar 

  25. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Science 297:1160

    Article  CAS  PubMed  Google Scholar 

  26. Carlson MT, Green AJ, Richardson HH (2012) Nano Lett 12:1534

    Article  CAS  PubMed  Google Scholar 

  27. Liu GL, Kim J, Lu Y, Lee LP (2006) Nat Mater 5:27

    Article  CAS  PubMed  Google Scholar 

  28. Salari H, Robatjazi H, Hormozi-Nezhad MR, Padervand M, Gholami MR (2014) Catal Lett 144:1219

    Article  CAS  Google Scholar 

  29. Lamei K, Eshghi H, Bakavoli M, Rostamnia S (2017) Catal Lett 147:491

    Article  CAS  Google Scholar 

  30. Qi C, Wang Y, Ding X, Su H (2016) Chin J Catal 37:1747

    Article  CAS  Google Scholar 

  31. Rami MD, Taghizadeh M, Akhoundzadeh H (2019) Microporous Mesoporous Mater 285:259

    Article  CAS  Google Scholar 

  32. Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) J Phys Chem B 110:2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neumann O, Feronti C, Neumann AD, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas NJ (2013) Proc Natl Acad Sci USA 110:11677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu L, Dao TD, Kodiyath R, Kang Q, Abe H, Nagao T, Ye J (2014) Adv Funct Mater 24:7754

    Article  CAS  Google Scholar 

  35. Reinholdt A, Pecenka R, Pinchuk A, Runte S, Stepanov AL, Weirich TE, Kreibig U (2004) Eur Phys J D 31:69

    Article  CAS  Google Scholar 

  36. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Opt Mater Express 2:478

    Article  CAS  Google Scholar 

  37. Cortie MB, Giddings J, Dowd A (2010) Nanotechnology 21:115201

    Article  CAS  PubMed  Google Scholar 

  38. Naik GV, Kim J, Boltasseva A (2011) Opt Mater Express 1:1090

    Article  CAS  Google Scholar 

  39. Ishii S, Sugavaneshwar RP, Nagao T (2016) J Phys Chem C 120:2343

    Article  CAS  Google Scholar 

  40. Ishii S, Shinde SL, Nagao T (2019) Adv Opt Mater 7:1800603

    Article  CAS  Google Scholar 

  41. Briggs JA, Naik GV, Petach TA, Baum BK, Goldhaber-Gordon D, Dionne JA (2016) Appl Phys Lett 108:051110

    Article  CAS  Google Scholar 

  42. Li W, Guler U, Kinsey N, Naik GV, Boltasseva A, Guan J, Shalaev VM, Kildishev AV (2014) Adv Mater 26:7959

    Article  CAS  PubMed  Google Scholar 

  43. Chirumamilla M, Chirumamilla A, Yang Y, Roberts AS, Kristensen PK, Chaudhuri K, Boltasseva A, Sutherland DS, Bozhevolnyi SI, Pedersen K (2017) Adv Opt Mater 5:1700552

    Article  CAS  Google Scholar 

  44. Patsalas P, Logothetidis S (2001) J Appl Phys 90:4725

    Article  CAS  Google Scholar 

  45. Guler U, Naik GV, Boltasseva A, Shalaev VM, Kildishev AV (2012) Appl Phys B 107:285

    Article  CAS  Google Scholar 

  46. Guler U, Ndukaife JC, Naik GV, Nnanna AGA, Kildishev AV, Shalaev VM, Boltasseva A (2013) Nano Lett 13:6078

    Article  CAS  PubMed  Google Scholar 

  47. Zanjanchi MA, Ghanadzadeh A, Khadem-Nahvi F (2002) J Inclusion Phenom Macrocyclic Chem 42:295

    Article  CAS  Google Scholar 

  48. Aghaei E, Haghighi M, Pazhohniya Z, Aghamohammadi S (2016) Microporous Mesoporous Mater 226:331

    Article  CAS  Google Scholar 

  49. Dai W, Wang X, Wu G, Guan N, Hunger M, Li L (2011) ACS Catal 1:292

    Article  CAS  Google Scholar 

  50. Song H, Meng X, Dao TD, Zhou W, Liu H, Shi L, Zhang H, Nagao T, Kako T, Ye J (2018) ACS Appl Mater Interfaces 10:408

    Article  CAS  PubMed  Google Scholar 

  51. Liu H, Dao TD, Liu L, Meng X, Nagao T, Ye J (2017) Appl Catal B 209:183

    Article  CAS  Google Scholar 

  52. Haruta M (2004) Gold Bull 37:27

    Article  CAS  Google Scholar 

  53. Wolf A, Schüth F (2002) Appl Catal A 226:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572191, 21633004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defa Wang.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Zhang, X., Song, L. et al. Efficient Methanol-to-Olefins Conversion Via Photothermal Effect Over TiN/SAPO-34 Catalyst. Catal Lett 152, 1651–1659 (2022). https://doi.org/10.1007/s10562-021-03757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03757-8

Keywords

Navigation