Skip to main content
Log in

Enhanced photothermal dehydration of methanol over W18O49/Au/SAPO-34 catalysts with broadened light absorption

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Methanol-to-olefins (MTO) process is one of the most critical pathways to produce low carbon olefins. Typically, the reaction is driven by thermal catalysis, which inevitably needs to consume large amounts of fossil fuel. Developing a new technique to substitute for the fuel burning is urgent for MTO process to improve the industry prospects and sustainability. Herein, we report a novel W18O49/Au/SAPO-34 (W/Au/S), a multifunctional photothermal catalyst for the MTO reaction. A high methanol conversion was achieved under xenonum (Xe) lamp irradiation, yielding methyl ether (ME) and ethylene as the main products. The optimized W/Au/S catalysts showed ethylene yield as high as 250 μmol in 60 min, which was 2.5 times higher than that of Au/SAPO-34. The physiochemical characterization revealed that the SAPO-34 molecular sieves were surrounded by Au and W18O49 nanoparticles, which exhibited a strong localized surface plasmon resonance excitation around 540 nm and light absorption beyond 500 nm. The multifunctional catalysts showed a strong photothermal effect, arising from the broadened light absorption of Au and W18O49 nanoparticles, leading to a temperature as high as 250 °C on the surface of the catalysts. Mechanism study showed that the superior ethylene selectivity of W/Au/S catalysts was attributed to the moderating acidic sites of W18O49 for methanol dehydration to ethylene. This research may provide new insight for designing heterostructures to improve photo-to-chemical conversion performance and is expected to accelerate progress toward the excellent multifunctional photothermal catalysts with broad light absorption for methanol activation and C–C bond formation.

Graphical abstract

摘要

甲醇制烯烃(MTO)工艺是生产低碳烯烃的关键技术之一。通常,该反应由热催化驱动,需要消耗大量化石燃料。因此,迫切需要开发一种替代化石燃料的MTO工艺新技术以改善行业前景和可持续性。本文制备了一种用于MTO反应的多功能光热催化剂W18O49/Au/SAPO-34 (W/Au/S)。在氙灯照射下,甲醇转化率较高,其主要产物为甲醚和乙烯。优化后的W/Au/S催化剂在60 min内的乙烯产率高达250 μmol,是Au/SAPO-34催化剂的2.5倍。对催化剂的物理化学性能表征表明,SAPO-34分子筛被Au和W18O49纳米粒子包裹,复合催化剂在540 nm附近表现出强烈的局部表面等离子体共振(LSPR)激发,同时光吸收区域扩展到红外光区。由于Au和W18O49纳米粒子的光吸收变宽,导致光照下催化剂表面温度高达250℃,催化剂表现出强烈的光热效应。机理研究表明,W/Au/S催化剂具有较好的乙烯选择性是由于W18O49表面合适的酸性位点对甲醇脱水制乙烯起到了催化作用。该研究可为设计异质结构以提高光化学转化性能提供新的思路,并有望加速开发用于甲醇活化和C–C键耦合的具有广泛光吸收的高性能光热催化剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Li FW, Thevenon A, Rosas-Hernández A, Wang ZY, Li YL, Gabardo M, Ozden A, Dinh T, Li J, Wang YH, Li YL, Gabardo M, Ozden A, Dinh C, Li J, Wang YH, Edwards J, Xu Y, McCallum C, Tao L, Liang ZQ, Luo MC, Wang X, Li H, O’Brien C, Tan C, Nam D, Quintero-Bermudez R, Zhuang TT, Li YG, Han ZJ, Britt R, Sinton D, Agapie T, Peters J, Sargent E. Molecular tuning of CO2-to-ethylene conversion. Nature. 2020;577(7791):509. https://doi.org/10.1038/s41586-019-1782-2.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou YL, Lin J, Li L, Pan XL, Sun XC, Wang XD. Enhanced performance of boron nitride catalysts with induction period for the oxidative dehydrogenation of ethane to ethylene. J Catal. 2018;365:14. https://doi.org/10.1016/j.jcat.2018.05.023.

    Article  CAS  Google Scholar 

  3. Zhang BX, Zhang JL, Hua ML, Wan Q, Su ZZ, Tan XN, Liu LF, Zhang FY, Chen G, Tan DX. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J Am Chem Soc. 2020;142(31):13606. https://doi.org/10.1021/jacs.0c06420.

    Article  CAS  PubMed  Google Scholar 

  4. Gao YF, Neal L, Ding D, Wu W, Baroi C, Gaffney M, Li FX. Recent advances in intensified ethylene production—a review. ACS Catal. 2019;9(9):8592. https://doi.org/10.1021/acscatal.9b02922.

    Article  CAS  Google Scholar 

  5. Standl S, Kirchberger M, Kühlewind T, Tonigold M, Sanchez-Sanchez M, Lercher A, Hinrichsen O. Single-event kinetic model for methanol-to-olefins (MTO) over ZSM-5: fundamental kinetics for the olefin co-feed reactivity. Chem Eng J. 2020;402:126023. https://doi.org/10.1016/j.cej.2020.126023.

    Article  CAS  Google Scholar 

  6. Olah GA. Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed. 2013;52(1):104. https://doi.org/10.1002/anie.201204995.

    Article  CAS  Google Scholar 

  7. Olsbye U, Svelle S, Lillerud K, Wei ZH, Chen YY, Li JF, Wang JG, Fan WB. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem Soc Rev. 2015;44(20):7155. https://doi.org/10.1039/c5cs00304k.

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Yang M, Tian P, Xu ST, Yang Y, Wang DH, Yuan YY, Liu ZM. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A. 2015;3(10):5608. https://doi.org/10.1039/C4TA06124A.

    Article  CAS  Google Scholar 

  9. Zhang JY, Lu BN, Chen FG, Li H, Ye M, Wang W. Simulation of a large methanol-to-olefins fluidized bed reactor with consideration of coke distribution. Chem Eng Sci. 2018;189:212. https://doi.org/10.1016/j.ces.2018.05.056.

    Article  CAS  Google Scholar 

  10. Chen J-M, Yu BY, Wei Y-M. Energy technology roadmap for ethylene industry in China. Appl Energ. 2018;224:160. https://doi.org/10.1016/j.apenergy.2018.04.051.

    Article  ADS  CAS  Google Scholar 

  11. Wang LM, Huang ZY, Xie SJ, Zhang QH, Wang HY, Wang Y. Photocatalytic C–H activation and C–C coupling of monohydric alcohols. Catal Commun. 2021;153:106300. https://doi.org/10.1016/j.catcom.2021.106300.

    Article  CAS  Google Scholar 

  12. Guo XN, Jiao ZF, Jin GQ, Guo XY. Photocatalytic Fischer–Tropsch synthesis on graphene-supported worm-like ruthenium nanostructures. ACS Catal. 2015;5(6):3836. https://doi.org/10.1021/acscatal.5b00697.

    Article  CAS  Google Scholar 

  13. Wu HK, Zhang F, Li JY, Tang ZR, Xu YJ. Photo-driven Fischer–Tropsch synthesis. J Mater Chem A. 2020;8(46):24253. https://doi.org/10.1039/D0TA09097B.

    Article  CAS  Google Scholar 

  14. Sun CY, Zhao ZW, Liu H, Wang HQ. Core–shell nanostructure for supra-photothermal CO2 catalysis. Rare Met. 2022;41(5):1403. https://doi.org/10.1007/s12598-021-01906-x.

    Article  CAS  Google Scholar 

  15. Zhang HB, Wang T, Wang JJ, Liu HM, Dao TD, Li M, Liu GG, Meng XG, Chang K, Shi L. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater. 2016;28(19):3703. https://doi.org/10.1002/adma.201505187.

    Article  CAS  PubMed  Google Scholar 

  16. Chen GB, Gao R, Zhao YF, Li ZH, Waterhouse GI, Shi R, Zhao JQ, Zhang MT, Shang L, Sheng GY. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv Mater. 2018;30(3):1704663. https://doi.org/10.1002/adma.201704663.

    Article  CAS  Google Scholar 

  17. Zou JS, Si ZC, Cao YD, Ran R, Wu XD, Weng D. Localized surface plasmon resonance assisted photothermal catalysis of CO and toluene oxidation over Pd–CeO2 catalyst under visible light irradiation. J Phys Chem C. 2016;120(51):29116. https://doi.org/10.1021/acs.jpcc.6b08630.

    Article  CAS  Google Scholar 

  18. Liu HM, Meng XG, Dao TD, Zhang HB, Li P, Chang K, Wang T, Li M, Nagao T, Ye JH. Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew Chem Int Ed. 2015;127(39):11707. https://doi.org/10.1002/anie.201504933.

    Article  ADS  CAS  Google Scholar 

  19. Chung WC, Lee YE, Chang MB. Syngas production via plasma photocatalytic reforming of methane with carbon dioxide. Int J Hydrog Energy. 2019;44(35):19153. https://doi.org/10.1016/j.ijhydene.2018.01.156.

    Article  CAS  Google Scholar 

  20. Zeng J, Xu L, Luo X, Chen T, Tang SH, Huang X, Wang LL. Z-scheme systems of ASi2N4 (A = Mo or W) for photocatalytic water splitting and nanogenerators. Tungsten. 2022;4(1):52. https://doi.org/10.1007/s42864-021-00116-3.

    Article  CAS  Google Scholar 

  21. Fan WK, Tahir M. Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: a review. Chem Eng J. 2022;427:131617. https://doi.org/10.1016/j.cej.2021.131617.

    Article  CAS  Google Scholar 

  22. Han KH, Wang Y, Wang S, Liu QY, Deng ZY, Wang FG. Narrowing band gap energy of CeO2 in (Ni/CeO2)@ SiO2 catalyst for photothermal methane dry reforming. Chem Eng J. 2021;421:129989. https://doi.org/10.1016/j.cej.2021.129989.

    Article  CAS  Google Scholar 

  23. Song CQ, Liu X, Xu M, Masi D, Wang YG, Deng YC, Zhang MT, Qin XT, Feng K, Yan J. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: from oxide to carbide. ACS Catal. 2020;10(18):10364. https://doi.org/10.1021/acscatal.0c02244.

    Article  CAS  Google Scholar 

  24. Xu QJ, Jiang JW, Wang XF, Duan LY, Guo H. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met. 2023;42(6):1888. https://doi.org/10.1007/s12598-022-02244-2.

    Article  CAS  Google Scholar 

  25. Wu ZW, Ran R, Ma Y, Wu XD, Si ZC, Weng D. Quantitative control and identification of copper species in Cu–SAPO-34: a combined UV–vis spectroscopic and H2-TPR analysis. Res Chem Intermed. 2019;45:1309. https://doi.org/10.1007/s11164-018-3680-x.

    Article  CAS  Google Scholar 

  26. Zhong JW, Han JF, Wei YX, Xu ST, Sun TT, Guo XW, Song CS, Liu ZM. Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts. Chin J Catal. 2018;39(11):1821. https://doi.org/10.1016/S1872-2067(18)63141-9.

    Article  CAS  Google Scholar 

  27. Cai PF, Li J, Wu XB, Li ZY, Shen J, Nie JJ, Cui ZD, Chen DF, Liang YQ, Zhu SL, Wu SL. ALD-induced TiO2/Ag nanofilm for rapid surface photodynamic ion sterilization. Rare Met. 2022;41(12):4138. https://doi.org/10.1007/s12598-022-02096-w.

    Article  CAS  Google Scholar 

  28. Wang J, Zhao D, Shen Y, Li F, Zhang M. Preparation of silver vanadate photocatalyst by co-precipitation method and effect of pH on its photocatalyticactivity. Chin J Rare Met. 2022;46(7):906. https://doi.org/10.13373/j.cnki.cjrm.XY20050022.

    Article  Google Scholar 

  29. Li Y, Yang YL, Chen G, Fan JJ, Xiang QJ. Au cluster anchored on TiO2/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction. Rare Met. 2022;41(9):3045. https://doi.org/10.1007/s12598-022-02007-z.

    Article  CAS  PubMed  Google Scholar 

  30. Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc Chem Res. 2008;41(12):1742. https://doi.org/10.1021/ar800121r.

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Hasanzadeh Kafshgari M, Meunier M. Optical properties and applications of plasmonic-metal nanoparticles. Adv Funct Mater. 2020;30(51):2005400. https://doi.org/10.1002/adfm.202005400.

    Article  CAS  Google Scholar 

  32. Wu NQ. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale. 2018;10(6):2679. https://doi.org/10.1039/C7NR08487K.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng XL, Yang YJ, LiuYH, Deng PL, Li J, Liu WF, Rao P, Jia CM, Huang W, Du YL, Shen YJ, Tian XL. Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4. Rare Met. 2022;41(7):2153. https://doi.org/10.1007/s12598-021-01955-2.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Gibbs L, Staller M, Milliron J. Surface depletion layers in plasmonic metal oxide nanocrystals. Accounts Chem Res. 2019;52(9):2516. https://doi.org/10.1021/acs.accounts.9b00287.

    Article  CAS  Google Scholar 

  35. Gordon R, Paik T, Klein R, Naik V, Caglayan H, Boltasseva A, Murray B. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett. 2013;13(6):2857. https://doi.org/10.1021/nl4012003.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hamza M, Bluet J-M, Masenelli-Varlot K, Canut B, Boisron O, Melinon P, Masenelli B. Tunable mid IR plasmon in GZO nanocrystals. Nanoscale. 2015;7(28):12030. https://doi.org/10.1039/c5nr03378k.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. De Trizio L, Buonsanti R, Schimpf M, Llordes A, Gamelin R, Simonutti R, Milliron J. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem Mater. 2013;25(16):3383. https://doi.org/10.1039/C8TC00185E.

    Article  Google Scholar 

  38. Khan A, Nilam B, Rukhsar C, Sayali G, Mandlekar B, Kadam A. A review article based on composite graphene @tungsten oxide thin films for various applications. Tungsten. 2022;5(4):391. https://doi.org/10.1007/s42864-022-00158-1.

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Swihart MT. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev. 2014;43(11):3908. https://doi.org/10.1039/C3CS60417A.

    Article  CAS  PubMed  Google Scholar 

  40. Liu D, Ding W, Liu J, Zhang J. Recent advances in defect chemistry of oxides for photocatalysis applications. Chin J Rare Met. 2021;45(5):583. https://doi.org/10.13373/j.cnki.cjrm.XY20080036.

    Article  Google Scholar 

  41. Feng YJ, Wang Y, Wang KW, Ma JP, Duan YY, Liu J, Lu X, Zhang B, Wang GY, Zhou XY. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 2022;41(2):385. https://doi.org/10.1007/s12598-021-01815-z.

    Article  CAS  Google Scholar 

  42. Fu A, Chen X, Tong LH, Wang DF, Liu LQ, Ye JH. Remarkable visible-light photocatalytic activity enhancement over Au/p-type TiO2 promoted by efficient interfacial charge transfer. ACS Appl Mater Interfaces. 2019;11(27):24154. https://doi.org/10.1021/acsami.9b07110.

    Article  CAS  PubMed  Google Scholar 

  43. Xi GC, Ye JH, Ma Q, Su N, Bai H, Wang C. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J Am Chem Soc. 2012;134(15):6508. https://doi.org/10.1021/ja211638e.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Li W, Qi GS, Weng D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3. J Catal. 2012;289:21. https://doi.org/10.1016/j.jcat.2012.01.012.

    Article  CAS  Google Scholar 

  45. Chen JH, Wang B, Yuan K, Kang YT, Feng S, Han F, Wu HM, Zhou RF, Zhong ZX, Fan YQ. One-pot in situ synthesis of Cu-SAPO-34/SiC catalytic membrane with enhanced binding strength and chemical resistance for combined removal of NO and dust. Chem Eng J. 2021;420:130425. https://doi.org/10.1016/j.cej.2021.130425.

    Article  CAS  Google Scholar 

  46. Mou J, Fan XQ, Liu F, Wang XD, Zhao TX, Chen P, Li ZW, Yang CL, Cao JX. CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts. Chem Eng J. 2021;421:129978. https://doi.org/10.1016/j.cej.2021.129978.

    Article  CAS  Google Scholar 

  47. Yan JY, Wang CH, Ma H, Li YY, Liu YC, Suzuki N, Terashima C, Fujishima A, Zhang XT. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl Catal B Environ. 2020;268:118401. https://doi.org/10.1016/j.apcatb.2019.118401.

    Article  CAS  Google Scholar 

  48. Zhou LN, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou MH, Dong LL, Henderson L. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat Energy. 2020;5(1):61. https://doi.org/10.1038/s41560-019-0517-9.

    Article  ADS  CAS  Google Scholar 

  49. Minelli M, Papa E, Medri V, Miccio F, Benito P, Doghieri F, Landi E. Characterization of novel geopolymer–zeolite composites as solid adsorbents for CO2 capture. Chem Eng J. 2018;341:505. https://doi.org/10.1016/j.cej.2018.02.050.

    Article  CAS  Google Scholar 

  50. Chen Z, Li XY, Xu YR, Dong YY, Lai WK, Fang WP, Yi XD. Fabrication of nano-sized SAPO-11 crystals with enhanced dehydration of methanol to dimethyl ether. Catal Commun. 2018;103:1. https://doi.org/10.1016/j.catcom.2017.09.002.

    Article  ADS  CAS  Google Scholar 

  51. Wang F, Ma JZ, He GZ, Chen M, Zhang CB, He H. Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia. ACS Catal. 2018;8(4):2670. https://doi.org/10.1021/acscatal.7b03799.

    Article  CAS  Google Scholar 

  52. Naya I, Kume T, Akashi R, Fujishima M, Tada H. Red-light-driven water splitting by Au (core)–CdS (shell) half-cut nanoegg with heteroepitaxial junction. J Am Chem Soc. 2018;140(4):1251. https://doi.org/10.1021/jacs.7b12972.

    Article  CAS  PubMed  Google Scholar 

  53. Alyea C, Bhat N. Methanol conversion to hydrocarbons over WO3/HZSM-5 catalysts prepared by metal oxide vapor synthesis. Zeolites. 1995;15(4):318. https://doi.org/10.1016/0144-2449(94)00043-R.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the High-level Innovative Talent Cultivation Project of Guizhou Province (No. GZSQCC2019003), the Natural Science Research Project of Guizhou Provincial Department of Education (No. QJHKY Zi[2021]257) and the Academic New Seedling Cultivation and Innovation Exploration Project of Guizhou Institute of Technology (No. GZLGXM-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Liang Zhang or Yi-Ke Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1036 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YQ., Yan, MX., Lu, CQ. et al. Enhanced photothermal dehydration of methanol over W18O49/Au/SAPO-34 catalysts with broadened light absorption. Rare Met. 43, 1139–1152 (2024). https://doi.org/10.1007/s12598-023-02511-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02511-w

Keywords

Navigation