Skip to main content

Advertisement

Log in

In Situ Fabrication of 1D WO3 Nanorod/2D ZnWO4 Nanosheet Heterojunction for Enhanced Photoelectrochemical Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The 1D WO3 nanorod/2D ZnWO4 nanosheet heterojunction arrays were successfully fabricated by combining a facile hydrothermal and in situ solvothermal growth reaction. The structure and morphology of the pristine WO3 and WO3/ZnWO4 heterojunction arrays were characterized by XRD, FESEM, TEM and HRTEM while the chemical composition and surface properties were characterized by XPS. The 2D ZnWO4 nanosheets were uniformly grown on the surface of the 1D WO3 nanorods which resulted in a large active surface area. The charge carriers separation can be improved because of the energy band structure match between WO3 and ZnWO4, which will more efficiently enhance the photoelectrochemical performance. The photocurrent densities of the WO3/ZnWO4 heterojunction photoanode reached to 2.53 mA/cm2 at 1.23 V versus RHE, nearly 1.6 times of the pristine WO3 photoanode under visible light illumination.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ren Y, Zeng D, Ong W-J (2019) Chin J Catal 40:289–319

    Article  CAS  Google Scholar 

  2. Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  3. Higashimoto S, Kitahata N, Mori K, Azuma M (2005) Catal Lett 101:49–51

    Article  CAS  Google Scholar 

  4. Tahir AA, Wijayantha KU, Saremi-Yarahmadi S, Mazhar M, McKee V (2009) Chem Mater 21:3763–3772

    Article  CAS  Google Scholar 

  5. Jin B, Wang D, Feng C, Bi Y, Jiao Z (2016) Catal Lett 146:1348–1354

    Article  CAS  Google Scholar 

  6. Trzciński K, Szkoda M, Sawczak M, Karczewski J, Lisowska-Oleksiak A (2016) Appl Surf Sci 385:199–208

    Article  Google Scholar 

  7. Zheng G, Wang J, Liu H, Murugadoss V, Zu G, Che H, Lai C, Li H, Ding T, Gao Q (2019) Nanoscale 11:18968–18994

    Article  CAS  Google Scholar 

  8. Chandrasekaran S, Zhang P, Peng F, Bowen C, Huo J, Deng L (2019) J Mater Chem A 7:6161–6172

    Article  CAS  Google Scholar 

  9. Wang S, Chen H, Gao G, Butburee T, Lyu M, Thaweesak S, Yun J-H, Du A, Liu G, Wang L (2016) Nano Energy 24:94–102

    Article  CAS  Google Scholar 

  10. Zheng F, Lu H, Guo M, Zhang M, Zhen Q (2015) J Mater Chem C 3:7612–7620

    Article  CAS  Google Scholar 

  11. Zhan F, Li J, Li W, Yang Y, Liu W, Li Y (2016) J Power Sources 325:591–597

    Article  CAS  Google Scholar 

  12. Yuan K, Cao Q, Li X, Chen H-Y, Deng Y, Wang Y-Y, Luo W, Lu H-L, Zhang DW (2017) Nano Energy 41:543–551

    Article  CAS  Google Scholar 

  13. Amouzegar Z, Naghizadeh R, Rezaie H, Ghahari M, Aminzare M (2015) Ceram Int 41:8352–8359

    Article  CAS  Google Scholar 

  14. Leonard KC, Nam KM, Lee HC, Kang SH, Park HS, Bard AJ (2013) J Phys Chem C 117:15901–15910

    Article  CAS  Google Scholar 

  15. Keereeta Y, Thongtem S, Thongtem T (2015) Powder Technol 284:85–94

    Article  CAS  Google Scholar 

  16. Zhan F, Liu Y, Wang K, Liu Y, Yang X, Yang Y, Qiu X, Li W, Li J (2019) ACS Appl Mater Interfaces 11:15467–15477

    Article  CAS  Google Scholar 

  17. Ren D, Zhang W, Ding Y, Shen R, Jiang Z, Lu X, Li X (2020) Solar RRL 4:1900423

    Article  CAS  Google Scholar 

  18. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X (2020) Appl Catal B 268:118382

    Article  CAS  Google Scholar 

  19. Li Y, Zhang JZ (2010) Laser Photonics Rev 4:517–528

    Article  CAS  Google Scholar 

  20. Jiang J, Zhang X, Sun P, Zhang L (2011) J Phys Chem C 115:20555–20564

    Article  CAS  Google Scholar 

  21. Zheng JY, Song G, Hong J, Van TK, Pawar AU, Kim DY, Kim CW, Haider Z, Kang YS (2014) Cryst Growth Des 14:6057–6066

    Article  CAS  Google Scholar 

  22. Yu W, Liu X, Pan L, Li J, Liu J, Zhang J, Li P, Chen C, Sun Z (2014) Appl Surf Sci 319:107–112

    Article  CAS  Google Scholar 

  23. Xiang K, Xu Z, Qu T, Tian Z, Zhang Y, Wang Y, Xie M, Guo X, Ding W, Guo X (2017) Chem Commun 53:12410–12413

    Article  CAS  Google Scholar 

  24. Yanagisawa K, Sato T, Xiaoyong W, Junting Y, Shu Z (2017) Appl Catal B 201:128–136

    Article  Google Scholar 

  25. Xu H, Chen J, Li Y, Guo X, Shen Y, Wang D, Zhang Y, Wang Z (2017) Sci Rep 7:1–10

    Article  Google Scholar 

  26. Yin X-L, Li L-L, Jiang W-J, Zhang Y, Zhang X, Wan L-J, Hu J-S (2016) ACS Appl Mater Interfaces 8:15258–15266

    Article  CAS  Google Scholar 

  27. Shen R, Liu W, Ren D, Xie J, Li X (2019) Appl Surf Sci 466:393–400

    Article  CAS  Google Scholar 

  28. Wang C, Wang Y, Cheng P, Xu L, Dang F, Wang T, Lei Z (2021) Sens Actuators B 340:129926

    Article  CAS  Google Scholar 

  29. Zhou M, Yan J, Cui P (2012) Mater Lett 89:258–261

    Article  CAS  Google Scholar 

  30. Osotsi MI, Macharia DK, Zhu B, Wang Z, Shen X, Liu Z, Zhang L, Chen Z (2018) Prog Nat Sci 28:408–415

    Article  CAS  Google Scholar 

  31. Zhan F, Li J, Li W, Liu Y, Xie R, Yang Y, Li Y, Chen Q (2015) Int J Hydrog Energy 40:6512–6520

    Article  CAS  Google Scholar 

  32. Hong T, Sun Y, Jepson W (2002) Corros Sci 44:101–112

    Article  CAS  Google Scholar 

  33. Hou Y, Zuo F, Dagg A, Feng P (2013) Angew Chem Int Ed 52:1248–1252

    Article  CAS  Google Scholar 

  34. Cui Y, Pan L, Chen Y, Afzal N, Ullah S, Liu D, Wang L, Zhang X, Zou J-J (2019) RSC Adv 9:5492–5500

    Article  CAS  Google Scholar 

  35. Gao E, Wang W, Shang M, Xu J (2011) Phys Chem Chem Phys 13:2887–2893

    Article  CAS  Google Scholar 

  36. Wang Y, Tian W, Chen C, Xu W, Li L (2019) Adv Funct Mater 29:1809036

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1038 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guo, C., Li, L. et al. In Situ Fabrication of 1D WO3 Nanorod/2D ZnWO4 Nanosheet Heterojunction for Enhanced Photoelectrochemical Performance. Catal Lett 152, 1611–1620 (2022). https://doi.org/10.1007/s10562-021-03756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03756-9

Keywords

Navigation