Skip to main content
Log in

Controllable Preparation of Chiral Oxazoline-Cu(II) Catalyst as Nanoreactor for Highly Asymmetric Henry Reaction in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A biomimetic nanoreactor of catalyst Cu(II)–PNxOy was prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) starting from chiral amino acid. Characterizations of this catalyst disclosed a clear biomimetic thermoresponsive behavior in water. The biomimetic chiral oxazoline Cu single-chain nanoparticles (SCNPs) could undergo self-folding in water to form nanoreactors which were capable to catalyze the asymmetric Henry reaction. Dramatical acceleration of reaction rate by “concentrator effect” and outstanding catalytic efficiency were observed in this nanoreactor system. Almost quantitative conversion (96%) of 4-nitrobenzaldehyde with high enantioselectivity (ee value, 95%) was achieved by using only 2.0 mol% this newly developed catalyst within 18 h in water. Remarkably, this biomimetic nanoreactor could be easily recovered by regulating local temperature and reused for at least 6 times without significant decrease of reactivity. Utilizing this new catalyst, the asymmetric Henry reaction of benzaldehyde compounds with nitromethane could perform efficiently in pure water without any addition of organic solvent. This protocol offers an efficient and environmentally benign method for the asymmetric Henry reaction which exhibits high potential for industrial applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palomo C, Oiarbide M, Laso A (2007) Eur J Org Chem 2007(16):2561–2574

    Google Scholar 

  2. Desimoni G, Faita G, Quadrelli P (2014) Chem Rev 114(12):6081–6129

    PubMed  CAS  Google Scholar 

  3. Szalad H, Candu N, Cojocaru B, Păsătoiu TD, Andruh M, Pârvulescu VI (2020) Chemistry 2(1):50–62

    CAS  Google Scholar 

  4. Evans DA, Seidel D, Rueping M, Lam HW, Shaw JT, Downey CW (2003) J Am Chem Soc 125(42):12692–12693

    PubMed  CAS  Google Scholar 

  5. Schätz A, Grass RN, Kainz Q, Stark WJ, Reiser O (2010) Chem Mater 22(2):305–310

    Google Scholar 

  6. Dagmar S, Felix P, Kaldun J (2014) Chem Commun 50:6623–6625

    Google Scholar 

  7. Zhu L, Wang LS, Li BJ, Fu BQ, Zhang CP, Li W (2016) Chem Commun 52:6371–6374

    CAS  Google Scholar 

  8. Borah P, Mondal J, Zhao Y (2015) J Catal 330:129–134

    CAS  Google Scholar 

  9. Vijaya PK, Murugesan S, Siva A (2016) Org Biomol Chem 14(42):10101–10109

    PubMed  CAS  Google Scholar 

  10. Dong L, Chen F (2020) RSC Adv 10(4):2313–2326

    Google Scholar 

  11. Xu F, Wang J, Liu B, Wu Q, Lin X (2011) Green Chem 13(9):2359–2361

    CAS  Google Scholar 

  12. Purkarthofer T, Gruber K, Gruber-Khadjawi M, Waich K, Skranc W, Mink D, Griengl H (2006) Angew Chem Int Ed 45(21):3454–3456

    CAS  Google Scholar 

  13. Tang L, Dong X, Zhou Z, Liu Y, Dai L, Zhang M (2015) RSC Adv 5(7):4758–4765

    CAS  Google Scholar 

  14. Konefał R, Černoch P, Konefał M, Spěváček J (2020) Polymers 12(9):1879–1895

    PubMed Central  Google Scholar 

  15. Zhou Z, Li Z, Hao X, Zhang J, Dong X, Liu Y, Sun W, Cao D, Wang J (2012) Org Biomol Chem 10(10):2113–2118

    PubMed  CAS  Google Scholar 

  16. Otevrel J, Bobal P (2017) J Org Chem 82(16):8342–8358

    PubMed  CAS  Google Scholar 

  17. Sappino C, Mari A, Mantineo A, Moliterno M, Palagri M, Tatangelo C, Suber L, Bovicelli P, Ricelli A, Righi G (2018) Org Biomol Chem 16(11):1860–1870

    PubMed  CAS  Google Scholar 

  18. El-Asaad B, Métay E, Karamé I, Lemaire M (2017) Mol Catal 435:76–81

    CAS  Google Scholar 

  19. Chunhong Z, Liu F, Gou S (2014) Tetrahedron 25(3):278–283

    Google Scholar 

  20. Selvakumar S, Sivasankaran D, Singh VK (2009) Org Biomol Chem 7(15):3156–3162

    CAS  Google Scholar 

  21. Sun XM, Meng FY, Su Q, Luo KX, Ju PY, Liu ZQ, Li XD, Li GH, Wu QL (2020) Dalton Trans 49(39):13582–13587

    PubMed  CAS  Google Scholar 

  22. Walas S, Tobiasz A, Gawin M, Trzewik B, Strojny M, Mrowiec H (2008) Talanta 76(1):96–101

    PubMed  CAS  Google Scholar 

  23. Liu Z, Xiang Z, Shen Z, Wu Q, Lin X (2014) Biochimie 101:156–160

    PubMed  CAS  Google Scholar 

  24. Lin BJ, Zhang XM, Zhou CY, Che CM (2021) Org Chem Front 8(6):1216–1222

    CAS  Google Scholar 

  25. Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, Kohler HE, McNeill K, Sander M (2017) Environ Sci Technol 51(13):7476–7485

    PubMed  CAS  Google Scholar 

  26. Wang H, Gu H, Chen Z, Shang L, Zhao Z, Gu Z, Zhao Y (2017) ACS Appl Mater Inter 9(15):12914–12918

    CAS  Google Scholar 

  27. Godoy-Gallardo M, Labay C, Trikalitis VD, Kempen PJ, Larsen JB, Andresen TL, Hosta-Rigau L (2017) ACS Appl Mater Inter 9(19):15907–15921

    CAS  Google Scholar 

  28. Wang Z, Wang Z, Pan X, Fu L, Lathwal S, Olszewski M, Yan J, Enciso AE, Wang Z, Xia H, Matyjaszewski K (2018) ACS Macro Lett 7(3):275–280

    CAS  Google Scholar 

  29. Qi P, You C, Zhang YHP (2014) ACS Catal 4(5):1311–1317

    CAS  Google Scholar 

  30. Bakalis E, Soldà A, Kosmas M, Rapino S, Zerbetto F (2018) Anal Chem 88(11):5790–5796

    Google Scholar 

  31. Männel MJ, Kreuzer LP, Goldhahn C, Schubert J, Hartl MJ, Chanana M (2017) ACS Catal 7(3):1664–1672

    Google Scholar 

  32. Hosono N, Kushner AM, Chung J, Palmans ARA, Guan Z, Meijer EW (2015) J Am Chem Soc 137(21):6880–6888

    PubMed  CAS  Google Scholar 

  33. Latorre-Sánchez A, Pomposo JA (2016) Polym Int 65(8):855–860

    Google Scholar 

  34. Keklik M, Akar I, Temel BA, Balta DK, Temel G (2020) Polym Int 69(10):1018–1023

    CAS  Google Scholar 

  35. Li Y, Zhang L, Shi Y, Huang J, Yang Y, Ming D (2020) Polymers 12(11):2565–2575

    PubMed Central  CAS  Google Scholar 

  36. Koenig M, Rodenhausen KB (2018) Langmuir 34(7):2448–2454

    PubMed  CAS  Google Scholar 

  37. Hirayama S, Oohora K, Uchihashi T, Hayashi T (2020) J Am Chem Soc 142(4):1822–1831

    PubMed  CAS  Google Scholar 

  38. Zheng W, Chen L, Yang G, Sun B, Wang X, Jiang B, Yin G, Zhang L, Li X, Liu M, Chen G, Yang H (2016) J Am Chem Soc 138(14):4927–4937

    PubMed  CAS  Google Scholar 

  39. Wei Y, Zeng Q, Wang M, Huang J, Guo X, Wang L (2019) Biosens Bioelectron 131:156–162

    PubMed  CAS  Google Scholar 

  40. Yu Y, Hu C, Xia L, Wang J (2018) ACS Catal 8(3):1851–1863

    CAS  Google Scholar 

  41. Lopez S, Rondot L, Leprêtre C, Marchi-Delapierre C, Ménage S, Cavazza C (2017) J Am Chem Soc 139(49):17994–18002

    PubMed  CAS  Google Scholar 

  42. Zhang YY, Tan R, Gao MQ, Hao PB, Yin DH (2017) Green Chem 19(4):1182–1193

    CAS  Google Scholar 

  43. Zhang YY, Tan R, Zhao GW, Luo XF, Yin DH (2016) Catal Sci Technol 6(2):488–496

    CAS  Google Scholar 

  44. Lago GLD, Felisberti MI (2020) Eur Polym J 125:109538–109548

    Google Scholar 

  45. Wieszczycka K, Staszak K (2017) Coordin Chem Rev 351:160–171

    CAS  Google Scholar 

  46. Yu Y, Cui C, Liu X, Petrik ID, Wang J, Lu Y (2015) J Am Chem Soc 137(36):11570–11573

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang X, Wang C, Pan M, Wei J, Jiang F, Lu R, Liu X, Huang Y, Huang F (2017) ACS Appl Mater Inter 9(30):25387–25396

    CAS  Google Scholar 

  48. Lourenço M, Carneiro L, Mayoral A, Diaz I, Silva A, Ferreira P (2014) J Catal 320:63–69

    Google Scholar 

  49. Cortez M, Grayson SM (2010) Macromolecules 43(9):4081–4090

    CAS  Google Scholar 

  50. Zhang YY, Han B, Zhou LJ, Wang MY, Li BJ, Wang LS, Zhu L (2021). Acta Polym Sin. https://doi.org/10.11777/j.issn1000-3304.2021.21016

    Article  Google Scholar 

  51. Basasoro S, Gonzalez-Burgos M, Moreno AJ, Verso FL, Arbe A, Colmenero J, Pomposo JA (2016) Macromol Rapid Comm 37(13):1060–1065

    CAS  Google Scholar 

  52. Thanneeru S, Duay SS, Jin L, Fu Y, Angeles-Boza AM, He J (2017) ACS Macro Lett 6(7):652–656

    CAS  Google Scholar 

  53. Li M, Qi S, Jin Y, Yao W, Zhang S, Zhao J (2014) Colloids Surf B 123:852–858

    CAS  Google Scholar 

  54. Zhang YY, Wang WY, Fu WQ, Zhang MJ, Tang ZY, Tan R, Yin DH (2018) Chem Commun 54:9430–9433

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21774029), the Natural Science Foundation of Hubei Province of China (Grant Nos. 2019CFB237, 2019CFB354), Hubei University Excellent Young and Middle-aged Science and Technology Innovation Team Project (Grant No. T201816), the Natural Science Foundation of Xiaogan City (Grant Nos. XGKJ201910047, XGKJ2020010053). Lei Zhu thanks the “Chutian Scholar” Program of Hubei Province. Lijie Zhou and Biao Han thanks the High Level Master Degree Thesis Cultivation Project of Hubei Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoyao Zhang, Xianbao Wang or Lei Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, L., Han, B. et al. Controllable Preparation of Chiral Oxazoline-Cu(II) Catalyst as Nanoreactor for Highly Asymmetric Henry Reaction in Water. Catal Lett 152, 106–115 (2022). https://doi.org/10.1007/s10562-021-03633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03633-5

Keywords

Navigation