Skip to main content
Log in

Kinetics Study of the Esterification Reaction of Cyclohexene to Cyclohexyl Acetate Catalyzed by Novel Brønsted–Lewis Acids Bifunctionalized Heteropolyacid Based Ionic Liquids Hybrid Solid Acid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Brønsted–Lewis acids bifunctionalized heteropolyacid based ionic liquids hybrid solid acid catalysts (BLA-HPA-ILs) were synthesized by combining the Brønsted acidic ionic liquid [Bis–Bs–BDMAEE]HPW12O40 with metallic oxide in different composition ratios and applied in the esterification of cyclohexene to cyclohexyl acetate. Among the synthesized catalysts, the 1/2Cu[Bis–Bs–BDMAEE]HPW12O40 catalyst with Brønsted and Lewis acidities shown the most excellent catalytic performance for the esterification of cyclohexene with acetic acid. The BLA-HPA-ILs catalysts were characterized by elemental analysis, FT-IR, Py-IR, TG, 1H NMR, SEM and EDX. The effects of reaction temperature, catalyst dosage, and initial reactant molar ratio has been investigated in detail. A pseudohomogeneous (PH) kinetic model was used to correlate the kinetic data in the temperature range of 333.15–363.15 K, and the kinetic parameters were estimated, indicating the results calculated by the kinetic model are well coincidence with the experimental results. Moreover, as a heterogeneous reaction catalyst, 1/2Cu[Bis–Bs–BDMAEE]HPW12O40 could be easily recovered by a simple treatment and reused six times without any obvious decrease in catalytic activity, displaying good reusability.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Cyclohexene

B :

Acetic acid

D :

Cyclohexyl acetate

HPA:

Heteropolyacid

ILs:

Ionic liquids

HPA-ILs:

Heteropolyacid based ionic liquids hybrid

BLA-ILs:

Brønsted–Lewis acidic ILs

BLA-HPA-ILs:

Brønsted–Lewis acids bifunctionalized heteropolyacid based ionic liquids hybrid solid acid

[Bis–Bs–BDMAEE]:

[HO3S–(CH2)4–BDMAEE–(CH2)4–SO3H]

PH:

Pseudohomogeneous

K e :

Equilibrium constant

k + :

Forward reaction rate constant (mol−1 min−1)

k :

Reverse reaction rate constant (mol−1 min−1)

k 0 :

Pre-exponential factor (L2 mol2 min1)

C i :

The molar concentration of component i (mol L−1)

m cat :

The catalyst dosage per unit volume (g L−1)

T :

Temperature (K)

t :

Time (min)

Δ r H 0 :

The reaction enthalpy (kJ mol−1)

Δ r S :

Entropy (J mol−1 K−1)

x :

Conversion of cyclohexene

x cal :

Calculated conversion

x exp :

Experimental conversion

E a :

Activation energy (kJ mol−1)

SRS :

Minimum sum of residual squares

References

  1. Xiang YZ, Li XN (2007) J Chem Ind Eng 58:3041–3045

    CAS  Google Scholar 

  2. Ishida H (1997) Catal Surv 1:241–246

    Article  CAS  Google Scholar 

  3. Fang CX, Yu Y, Wang YT, Qu YX (2012) Mod Chem Ind 32:16–19

    CAS  Google Scholar 

  4. Wu JM, Dai XM, Chen JL, Guo WD (2003) Chem Ind Eng Prog 22:1222–1224

    CAS  Google Scholar 

  5. Fang DR, Lu JY, Zhang HM, Li J, Wang YY (2013) Chem Res Chin Univ 29:743–746

    Article  CAS  Google Scholar 

  6. Jin JJ, Li F, Yang LH, Zhang DS, Xue W, Wang YJ (2004) Acta Petrol Sin (Pet Process Section) 30:169–174

    Google Scholar 

  7. Guo ZW, Jin HB, Tong ZM (2006) Chem Ind Eng Prog 25:852–859

    CAS  Google Scholar 

  8. Wang BY, Ge XX, Wu FL, Wu YX, Zheng HD, Qiu T (2010) Chem Ind Eng Prog 29:861–865

    CAS  Google Scholar 

  9. Zhang H, Mahajani SM, Sharma MM, Sridhar T (2002) Chem Eng Sci 57:315–322

    Article  CAS  Google Scholar 

  10. Katariya A, Freund H, Sundmacher K (2009) Ind Eng Chem Res 48(21):9534–9545

    Article  CAS  Google Scholar 

  11. Xue W, Zhao HP, Yao J, Li F, Wang YJ (2016) Chin J Catal 37(5):769–777

    Article  CAS  Google Scholar 

  12. Cao ZJ, Zhao X, He FQ, Zhou Y, Huang K, Zheng AM, Tao DJ (2018) Ind Eng Chem Res 57(19):6654–6663

    Article  CAS  Google Scholar 

  13. Steyer F, Freund H, Sundmacher K (2008) Ind Eng Chem Res 47:9581–9587

    Article  CAS  Google Scholar 

  14. Sang HL, Won YC, Kyung JK, Dae JC, Jae WL (2018) Chem Eng Process 123:249–257

    Article  Google Scholar 

  15. Rakesh K, Amit K, Hannsjorg F, Kai S (2011) Org Process Res Dev 15:527–539

    Article  Google Scholar 

  16. Yao B, Wang Z, Xiao T, Cao F, Edwards PP (2015) Appl Petrochem Res 5:135–142

    Article  CAS  Google Scholar 

  17. Zheng GC, Li XZ (2019) Synth Commun 49(7):1–9

    Article  Google Scholar 

  18. Jiang HR, Lu B, Ma LJ, Yuan X (2020) Catal Lett 150:1786–1797

    Article  CAS  Google Scholar 

  19. Ma L, Xu L, Jiang H, Yuan X (2019) RSC Adv 9:5692–5700

    Article  CAS  Google Scholar 

  20. Lu B, Wu ZW, Ma LJ, Yuan X (2018) J Taiwan Inst Chem Eng 88:1–7

    Article  CAS  Google Scholar 

  21. Zhang QH, Zhang SG, Deng YQ (2011) Green Chem 13:2619–2637

    Article  CAS  Google Scholar 

  22. Chen FF, Huang K, Zhou Y, Tian ZQ, Zhu X, Tao DJ, Jiang DE, Dai S (2016) Angew Chem Int Ed 55:7166–7170

    Article  CAS  Google Scholar 

  23. Song ZB, Huang W, Zhou Y, Tian ZQ, Li ZM, Tao DJ (2020) Green Chem 22:103–109

    Article  CAS  Google Scholar 

  24. Hui W, Zhou Y, Dong Y, Cao ZJ, He FQ, Cai MZ, Tao DJ (2019) Green Energy Environ 4:49–55

    Article  Google Scholar 

  25. Yang F, Xue W, Zhang DS, Li F, Wang YJ (2016) React Kinet Mech Catal 117:329–339

    Article  CAS  Google Scholar 

  26. Tao DJ, Dong Y, Cao ZJ, Chen FF, Chen XS, Huang K (2016) J Ind Eng Chem 41:122–129

    Article  CAS  Google Scholar 

  27. Yang Z, Cui XB, Jie HM, Yu XF, Zhang Y, Feng TY, Liu H, Song K (2015) Ind Eng Chem Res 54:1204–1251

    Article  CAS  Google Scholar 

  28. Ou YF, Wang ZZ, Zhou Y, Chen Z, Lu ZH, Yang Z, Tao DJ (2015) Appl Catal A 492:177–183

    Article  Google Scholar 

  29. An XC, Li ZM, Zhou Y, Zhu WS, Tao DJ (2020) Chem Eng J 394:124859

    Article  CAS  Google Scholar 

  30. Cai XJ, Cui SH, Qu LP, Yuan DD, Lu B, Cai QH (2007) Catal Commun 9:6

    Google Scholar 

  31. Hafizi A, Ahmadpour A, Koolivand-Salooki M, Heravi MM, Bamoharram FF (2013) J Ind Eng Chem 19:1981–1989

    Article  CAS  Google Scholar 

  32. Sawant DP, Vinu A, Justus J, Srinivasu P, Halligudi SB (2007) J Mol Catal A 276:150–157

    Article  CAS  Google Scholar 

  33. Zhou Y, Chen GJ, Long ZY, Wang J (2014) RSC Adv 4:42092–42113

    Article  CAS  Google Scholar 

  34. Liu YY, Murata K, Inaba M (2006) J Mol Catal A 256:247–255

    Article  CAS  Google Scholar 

  35. Leng Y, Wang J, Zhu DR, Shen L, Zhao P, Zhang M (2011) Chem Eng J 173:620–626

    Article  CAS  Google Scholar 

  36. Leng Y, Wang J, Zhu DR, Ren XQ, Ge HQ, Shen L (2009) Angew Chem Int Ed 48:168–171

    Article  CAS  Google Scholar 

  37. Li KX, Chen L, Wang HL, Lin WB, Yan ZC (2011) Appl Catal A 392:233–237

    Article  CAS  Google Scholar 

  38. Zhao PP, Zhang MJ, Wu YJ, Wang J (2012) Ind Eng Chem Res 51:6641–6647

    Article  CAS  Google Scholar 

  39. Leng Y, Zhao PP, Zhang MJ, Wang J (2012) J Mol Catal A 358:67–72

    Article  CAS  Google Scholar 

  40. Zhao PP, Leng Y, Wang J (2012) Chem Eng J 204:72–78

    Article  Google Scholar 

  41. Huang WL, Zhu WH, Li HM, Shi H, Zhu GP, Liu H, Chen GY (2010) Ind Eng Chem Res 49:8998–9003

    Article  CAS  Google Scholar 

  42. Liu Y, Wang TY, Zhai CP, Chen WP, Qiao CZ (2014) Ind Eng Chem Res 53:14633–14640

    Article  CAS  Google Scholar 

  43. Liu Y, Liu WH, Shao XN, Wang JH, Li XY (2018) Catal Lett 148:144–153

    Article  CAS  Google Scholar 

  44. Liu Y, Liu WH, Wang L, Su MJ, Liu FJ (2018) Ind Eng Chem Res 57:5207–5214

    Article  CAS  Google Scholar 

  45. Matuszek K, Chrobok A, Coleman F, Seddonb KR, Kwaśny MS (2014) Green Chem 16:3463–3471

    Article  CAS  Google Scholar 

  46. Wang HX, Wu CM, Bu XW, Tang WL, Li L, Qiu T (2014) Chem Eng J 246:366–372

    Article  CAS  Google Scholar 

  47. Yang YB, He WS, Jia CS, Ma Y, Zhang XM, Feng B (2012) J Mol Catal A 357:39–43

    Article  CAS  Google Scholar 

  48. Han XX, Yan W, Hung CT, Liu LL, Wu PH, Ren DH, Huang SJ, Liu SB (2016) Korean J Chem Eng 33:2063–2072

    Article  CAS  Google Scholar 

  49. Liu SW, Chen CG, Yu FL, Li L, Liu ZG, Yu ST, Xie CX, Liu FS (2015) Fuel 159:803–809

    Article  CAS  Google Scholar 

  50. Yuan B, Xie CX, Yu FL, Yang XY, Yu ST, Zhang JL, Chen XB (2016) Springer Plus 5:460–464

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Wu YF, Su MJ, Liu WH, Li XY, Liu FJ (2020) J Ind Eng Chem 92:200–209

    Article  CAS  Google Scholar 

  52. Tao DJ, Li ZM, Cheng Z, Hu N, Chen XS (2012) Ind Eng Chem Res 51:16263–16269

    Article  CAS  Google Scholar 

  53. JagadeeshBabu PE, Sandesh K, Saidutta MB (2011) Ind Eng Chem Res 50:7155–7160

    Article  CAS  Google Scholar 

  54. Jignesh G, Surendra M, Sanjay M (2003) Ind Eng Chem Res 42:2146–2155

    Article  Google Scholar 

  55. Bastian S, Michael D, Julrgen G (2008) Ind Eng Chem Res 47:698–703

    Article  Google Scholar 

  56. Tsai YT, Lee MJ (2011) Ind Eng Chem Res 50:1171–1176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (No. 21676072), Henan Science and Technology Research Project (212102210653, 202102310285), China Postdoctoral Science Foundation (2020M672209), and Scientific Research Projects for Higher Education of Henan Province (20A530002),  the Program for Innovation Teams in Science and Technology in Universities of Henan Province (20IRTSTHN004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhong Wang or Yong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guang, B., Wu, Y., Liu, W. et al. Kinetics Study of the Esterification Reaction of Cyclohexene to Cyclohexyl Acetate Catalyzed by Novel Brønsted–Lewis Acids Bifunctionalized Heteropolyacid Based Ionic Liquids Hybrid Solid Acid Catalysts. Catal Lett 152, 75–86 (2022). https://doi.org/10.1007/s10562-021-03626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03626-4

Keywords

Navigation