Skip to main content
Log in

Lacunar Keggin Heteropolyacid Salts: Soluble, Solid and Solid-Supported Catalysts

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Polyoxometalates are an important class of environmentally friendly catalysts. The Keggin heteropolyacids containing tungsten or molybdenum addenda atoms have received great attention because they have attractive acid and redox properties, which may be easily tunable through changes in their composition and structure. The replacement of their protons by large radium cations makes insoluble the Keggin heteropolyacids and increases their surface area. On the other hand, the removal of tungsten or molybdenum atoms from the Keggin heteropolyanion generates vacancies, which can activate different organic substrates. Therefore, solid lacunar heteropolyacid salts are potentially active catalysts and selective in a plethora of reactions. These catalysts are used either in homo- or heterogeneous conditions. In this review, we wish would highlight recent advances achieved in the chemistry of lacunar Keggin heteropolyacids. We describe their use as solid, soluble or solid-supported catalysts in reactions of oxidation of alcohols and olefins, oxidative desulfurization and acid-catalyzed reactions such as acetalization, esterification, and transesterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10

Similar content being viewed by others

References

  1. J. L. C. Sousa, I. C. M. S. Santos, M. M. Q. Simões, J. A. S. Cavaleiro, H. I. S. Nogueira, and A. M. V. Cavaleiro (2011). Catal. Commun. 12, 459.

  2. I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.

    Article  CAS  Google Scholar 

  3. J. J. Berzelius (1826). Poggendorffs Ann. Phys. Chem. 6, 369.

    Article  Google Scholar 

  4. S. Omwoma, C. T. Gore, Y. Ji, C. Hu, and Y. F. Song (2014). Coord. Chem. Rev. 286, 17.

    Article  Google Scholar 

  5. M. Misono, I. Ono, G. Koyano, and A. Aoshima (2000). Pure Appl. Chem. 72, 1305.

    Article  CAS  Google Scholar 

  6. M. N. Timofeeva (2003). Appl. Catal. A 256, 19.

    Article  CAS  Google Scholar 

  7. B. Li, W. Ma, C. Han, J. Liu, X. Pang, and X. Gao (2012). Micropor. Mesopor. Mat. 156, 73.

    Article  CAS  Google Scholar 

  8. Y. Chen, Y. Cao, G.-P. Zheng, B.-B. Dong, and X.-C. Zheng (2014). Adv. Powder Technol. 25, 1351.

    Article  CAS  Google Scholar 

  9. N. Mizuno and M. Misono (1994). J. Mol. Catal. 86, 319.

    Article  CAS  Google Scholar 

  10. A. Jurgensen and J. B. Moffat (1995). Catal. Lett. 34, 237.

    Article  Google Scholar 

  11. M. Misono (2001). Chem. Commun., 1141.

  12. T. Okuhara, N. Mizuno, and M. Misono (1996). Adv. Catal. 41, 113.

    CAS  Google Scholar 

  13. M. Misono (1987). Catal. Rev. Sci. Eng. 29, 269.

    Article  CAS  Google Scholar 

  14. N. Mizuno and M. Misono (1998). Chem. Rev. 98, 199.

    Article  CAS  Google Scholar 

  15. M. Misono (1993). Mol. Engin. 3, 193.

    Article  CAS  Google Scholar 

  16. C. Jahier, R. Touzani, S. E. Kadiri, and S. Nlate (2016). Inorg. Chim. Acta 450, 81.

    Article  CAS  Google Scholar 

  17. A. M. Khenkin and R. Neumann (2015). J. Organometal. Chem. 793, 134.

    Article  CAS  Google Scholar 

  18. J. Li, C. Zhang, P. Jiang, and Y. Leng (2017). Catal. Commun. 94, 13.

    Article  CAS  Google Scholar 

  19. M. R. Farsani, F. Jalilian, B. Yadollahi, and H. A. Rudbari (2014). Polyhedron 76, 102.

    Article  CAS  Google Scholar 

  20. W. Zhao, Y. Zhang, B. Ma, Y. Ding, and W. Qiu (2010). Catal. Commun. 11, 527.

    Article  CAS  Google Scholar 

  21. S. Pathan and A. Patel (2013). Appl. Catal. A 459, 59.

    Article  CAS  Google Scholar 

  22. Y. Ren, B. Liu, Z. Zhang, and J. Lin (2015). J. Ind. Engin. Chem. 21, 1127.

    Article  CAS  Google Scholar 

  23. C. L. Hill (2007). J. Mol. Catal. A: Chem. 262, 2.

    Article  CAS  Google Scholar 

  24. Y. Zhou, G. Chen, Z. Long, and J. Wang (2014). RSC Adv. 4, 42092.

    Article  CAS  Google Scholar 

  25. M. Misono (2001). Chem. Commun. 10, 1141.

    Article  Google Scholar 

  26. X. Chen, Y. Liu, H. Wang, M. Yuan, X. Wang, and Y. Chen (2014). RSC Adv. 4, 11232.

    Article  CAS  Google Scholar 

  27. T. Okuhara, T. Nishimura, and M. Misono (1996). Stud. Surf. Sci. Catal. 101, 581.

    Article  CAS  Google Scholar 

  28. G. Koyano, K. Ueno, and M. Misono (1999). Appl. Catal. A 181, 267.

    Article  CAS  Google Scholar 

  29. T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, and M. Misono (2002). Chem. Rev. 102, 3641.

    Article  CAS  Google Scholar 

  30. N. Mizuno, T. Watanabe, H. Mori, and M. Misono (1990). J. Catal. 123, 157.

    Article  CAS  Google Scholar 

  31. S. Liu, L. Chen, G. Wang, J. Liu, Y. Gao, C. Li, and H. Shan (2015). J. Ener. Chem. 25, 85.

    Article  Google Scholar 

  32. M. Misono (1993). Stud. Surf. Sci. Catal. 75, 69.

    Article  CAS  Google Scholar 

  33. T. M. Anderson and C. L. Hill (2002). Inorg. Chem. 41, 4252.

    Article  CAS  Google Scholar 

  34. N. Narkhede, S. Singh, and A. Patel (2015). Green Chem. 17, 89.

    Article  CAS  Google Scholar 

  35. A. Tadjarodi, A. Irajizad, and M. Imani (2015). Mixed ammonium silver phosphomolybdate salt nanostructures solid state synthesis, characterization of driving agent role and photocatalytic property. Materials Lett. 161, 464.

    Article  CAS  Google Scholar 

  36. K. Nomiya, M. Miwa, and Y. Sugaya (1984). Polyhedron 3, 607.

    Article  CAS  Google Scholar 

  37. E. Antolini and E. R. Gonzalez (2010). Appl. Catal. B 96, (3–4), 245.

    Article  CAS  Google Scholar 

  38. A. Khenkin (2002). R. Neumann. Adv. Synth. Catal. 344, 1017.

    Article  CAS  Google Scholar 

  39. F. Jonnevijlle, C. M. Tourné, and G. F. Tourné (1982). Inorg. Chem. 21, 2751.

  40. F. Cavani (1998). Catal. Today 41, 73.

  41. M. J. da Silva and N. Liberto (2016) Curr. Org. Chem., 20, 1263.

  42. L. R. Pizzio (2003). M. R. Blanco Micropor. Mesopor. Mat. 103, 40.

    Article  Google Scholar 

  43. D. Bajuk-Bogdanovi, I. Holclajtner-Antunonovi, M. Todorovi, U. B. Mio, and J. Zakakrzewska (2008). J. Serb. Chem. Soc. 73, 197.

    Article  Google Scholar 

  44. C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot (1983). Inorg. Chem. 22, 207.

    Article  CAS  Google Scholar 

  45. J. H. Choi, J. K. Kim, D. R. Park, T. H. Kang, J. H. Song, and I. K. Song (2013). J. Mol. Catal. A. 371, 111.

    Article  CAS  Google Scholar 

  46. M. T. Pope and A. Muller Polyoxometalate chemistry from topology via self-assembly to applications (Kluwer academic publishers, N.Y., 2001).

    Google Scholar 

  47. N. Wu, B. Li, W. Ma, and H. Chunying (2014). Micropor. Mesopor. Mat. 186, 155.

    Article  CAS  Google Scholar 

  48. J. Haber, L. Matachowski, D. Mucha, J. Stoch, and P. Sarv (2005). Inorg. Chem. 44, 6695.

    Article  CAS  Google Scholar 

  49. J. Hu and R. C. Burns (2000). J. Catal. 195, 360.

    Article  CAS  Google Scholar 

  50. J. Muzart (2003). Tetrahedron 59, 5789.

    Article  CAS  Google Scholar 

  51. S. O. Ribeiro, D. Juliao, L. Cunha-Silva, V. F. Domingues, R. Valenca, J. C. Ribeiro, and S. S. Balula (2016). Fuel 166, 268.

    Article  CAS  Google Scholar 

  52. K. Sato, M. Hyodo, J. Takagi, M. Aoki, and R. Noyori (2000). Tetrahedron Letters 41, 1439.

    Article  CAS  Google Scholar 

  53. P. K. Tandon, R. Baboo, A. K. Singh, and M. Purvar (2005). App. Organometal. Chem. 19, 1079.

    Article  CAS  Google Scholar 

  54. Z.-Q. Cong, C.-I. Wang, T. Chen, B.-Z. Yin (2006). Synth. Commun., 36, 679.

  55. A. C. Alba-Rubio, J. L. G. Fierro, L. Leon-Reina, J. A. Mariscal, M. Dumesic, and M. Lopez (2017). App. Cat. B: Environmental 202, 269.

    Article  CAS  Google Scholar 

  56. H. Lu, P. Li, Y. Liu, L. Hao, W. Ren, W. Zhu, and F. Yang. Chem. Eng. J. 313, 1004.

    Article  CAS  Google Scholar 

  57. I. V. Kozhevnikov Catalysts for Fine Chemicals, vol. 2, Catalysis by Polyoxometalates (Wiley, Chichester, 2002).

    Google Scholar 

  58. C. L. Hill and C. M. Prosser-McCartha (1995). Coordin. Chem. Rev. 143, 407.

    Article  CAS  Google Scholar 

  59. M. J. da Silva, L. F. dos Santos (2013). J. Appl. Chem., 1--7, Article ID 147945.

  60. D. Wang, E. W. Qian, H. Amano, K. Okata, A. Ishihara, and T. Kabe (2003). Appl. Catal. 253, 91.

    Article  CAS  Google Scholar 

  61. S. S. Balula, S. I. C. M. S. Santos, L. Cunha-Silva, A. P. Carvalho, J. Pires, C. Freire, J. A. S. Cavaleiro, B. de Castro, and A. M. V. Cavaleiro (2013). Catal. Today 203, 102.

    Article  Google Scholar 

  62. S. Pathan (2011). A. Patel. Dalton Trans. 40, 348.

    Article  CAS  Google Scholar 

  63. P. A. Shringarpure and A. Patel (2011). Reac. Kinet. Mech. Cat 103, 165.

    Article  CAS  Google Scholar 

  64. R. H. Ingle and R. N. K. Kala (2008). J Mol Catal A Chem 294, 8.

    Article  CAS  Google Scholar 

  65. B. Ma, Y. Zhang, Y. Ding, and W. Zhao (2010). Catal commun 11, 853.

    Article  CAS  Google Scholar 

  66. W. Zhao and Ch Yangew (2013). N. J. Chem. 37, 1867.

    Article  CAS  Google Scholar 

  67. N. Mizuno and K. Yamaguchi (2006). The Chemical Record 6, 12.

    Article  CAS  Google Scholar 

  68. S. Singh, A. Patel, and P. Prakashan (2015). Appl. Catal. A 505, 131.

    Article  CAS  Google Scholar 

  69. S. G. Casuscelli, M. E. Crivello, C. F. Perez, G. Ghione, E. R. Herrero, L. R. Pizzio, P. G. Vázquez, C. V. Cáceres, and M. N. Blanco (2004). Appl. Catal. A 274, 115.

    Article  CAS  Google Scholar 

  70. S. S. Balula, I. C. M. S. Santos, L. Cunha-Silva, A. P. Carvalho, J. Pires, C. Freire, J. A. S. Cavaleiro, B. de Castro, and A. M. V. Cavaleiro (2013). Catal. Today 203, 95.

    Article  CAS  Google Scholar 

  71. X. Dong, C. Yu, D. Wang, Y. Zhang, P. Wu, H. Hu, and G. Xue (2017). Mat. Res. Bull. 85, 152.

    Article  CAS  Google Scholar 

  72. A. Patel and N. Narkhede (2013). Catal. Sci. Technol. 3, 3317.

    Article  CAS  Google Scholar 

  73. N. Narkhede and A. Patel (2014). RSC Adv. 4, 19294.

    Article  CAS  Google Scholar 

  74. N. Narkhede and A. Patel (2015). RSC Adv. 5, 52801.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Jose da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronel, N.C., da Silva, M.J. Lacunar Keggin Heteropolyacid Salts: Soluble, Solid and Solid-Supported Catalysts. J Clust Sci 29, 195–205 (2018). https://doi.org/10.1007/s10876-018-1343-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1343-0

Keywords

Navigation