Skip to main content

Advertisement

Log in

Catalytic Performance of a Robust Whole-Cell Biocatalyst in the Regioselective Synthesis of Helicid Esters Under Optimized Processing Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, lyophilized Pseudomonas aeruginosa based whole-cell biocatalyst was used in the highly efficient and regioselective acylation of helicid with fatty acid vinyl esters in organic solvents. P. aeruginosa whole-cell catalyst showed high biomass and biocatalytic performance using 0.1% (w/v) soybean oil and 0.2% (w/v) tryptone as the carbon and nitrogen source, respectively. The biomass (0.72 g/L) cultivated for 36 h under the optimized conditions was 2-folds higher than that obtained by the use of the initial conditions (0.36 g/L). In addition, the optimized medium was found to be suitable for P. aeruginosa cultured in 3.5-L scale fermentation with high biomass (0.71 g/L) obtained at 24 h. Besides, a high substrate conversion efficiency (ranged from 92 to 99%) and excellent regioselectivity (99%) was achieved when P. aeruginosa whole-cell biocatalyst was applied to synthesize an array of 6′-esters of helicid. The reaction rate varies with varying acyl donors because of their differential interactions with the catalytic site of the enzyme from the whole cells of P. aeruginosa. Taken together, P. aeruginosa whole-cell catalyst obtained using optimal culture medium manifest a promising and highly-regioselective alternative to purified enzymes for the regioselective formation of 6′-esters derivatives of helicid in non-aqueous solvents.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source on the biomass and catalytic activity of the whole cells. Culture conditions (w/v): different concentrations of soybean oil, 0.1% tryptone, 0.02% MgSO4·7H2O, 0.5% (NH4)2SO4, 30 °C, 180 rmp and 48 h. Reaction conditions: 0.02 mmol helicid, 0.6 mmol vinyl caprylate, 0.08 g catalyst preparation, 2 mL anhydrous acetone, 40 °C, 200 rpm, 36 h

Fig. 2

source on the biomass and catalytic activity of the whole cells. Culture conditions (w/v): 0.1% soybean oil, different concentrations of tryptone, 0.02% MgSO4·7H2O, 0.5% (NH4)2SO4, 30 °C, 180 rmp and 48 h. Reaction conditions: 0.02 mmol helicid, 0.6 mmol vinyl caprylate, 0.08 g catalyst preparation, 2 mL anhydrous solvent, 40 °C, 200 rpm, 36 h

Fig. 3

Similar content being viewed by others

References

  1. Mellou F, Loutrari H, Stamatis H, Roussos C, Kolisis FN (2006) Process Biochem 41(9):2029–2034

    CAS  Google Scholar 

  2. Zhang MQ, Wang TX, Li R, Huang ZL, Han WJ, Dai XC, Wang QY (2017) J Sleep Res 26(3):386–393

    PubMed  Google Scholar 

  3. Tong JC, Zhou ZM, Qi WW, Jiang SY, Yang BZ, Zhong ZL, Jia YW, Li XY, Xiong LN, Nie LW (2019) Int Immunopharmacol 67:13–21

    CAS  PubMed  Google Scholar 

  4. Liu QF, Shi Y, Guo T, Wang Y, Cong WJ, Zhu JJ (2012) J Chromatogr B 907:146–153

    CAS  Google Scholar 

  5. Yi W, Cao RH, Wen H, Yan Q, Zhou BH, Wan YQ, Ma L, Song HC (2008) Med Chem Lett 18(24):6490–6493

    CAS  Google Scholar 

  6. Wen H, Lin HW, Que L, Ge H, Ma L, Cao RH, Wan YQ, Peng WL, Wang ZH, Song HC (2008) Eur J Med Chem 43(1):166–173

    CAS  PubMed  Google Scholar 

  7. Yang RL, Zhao XJ, Liu XM (2013) PLoS ONE ONE 8(11):e80715

    Google Scholar 

  8. Kumar G, Dhawan A, Singh BK, Sharma NK, Sharma SK, Prasad AK, Van der Eycken EV, Len C, Watterson AC, Parmar VS (2015) Catal Lett 145(3):919–929

    CAS  Google Scholar 

  9. Vázquez-Martínez J, Álvarez E, -Chávez E, Molina-Torres J (2018) Catal Lett 148(1):62–67

    Google Scholar 

  10. Patil HS, Jadhav DD, Paul A, Mulani FA, Karegaonkar SJ, Thulasiram HV (2018) Bioorg Med Chem Lett 28(6):1132–1137

    CAS  PubMed  Google Scholar 

  11. -Schumacher MB, Thum O (2013) Chem Soc Rev 42(15):6475–6490

    CAS  PubMed  Google Scholar 

  12. Méndez-Sánchez D, -Iglesias M, Gotor-Fernández V (2016) Curr Org Chem 20(11):1186–1203

    Google Scholar 

  13. Xin X, Li XF, Xiao X, Tang Y, Zhao G (2017) ACS Sustain Chem Eng 5(11):10662–10672

    CAS  Google Scholar 

  14. Li XF, Xu HX, Zhao GL, Wu H, Yu YG, Lai FR, Xiao XL (2018) RSC Adv 8(18):10081–10088

    CAS  Google Scholar 

  15. Jin Z, Han SY, Zhang L, Zheng SP, Wang Y, Lin Y (2013) Bioresour Technol 130:102–109

    CAS  PubMed  Google Scholar 

  16. Yang MY, Wu H, Lu ZH, Li XF, Lai FR, Zhao GL (2014) Bioorg Med Chem Lett 24(15):3377–3380

    CAS  PubMed  Google Scholar 

  17. Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, -Schumacher MB, de María PD (2011) Chem Commun 47(44):12230–12232

    CAS  Google Scholar 

  18. Rios NS, Pinheiro BB, Pinheiro MP, Bezerra RM, dos Santos JCS, Gonçalves LR (2018) Process Biochem 75:99–120

    CAS  Google Scholar 

  19. Karmee SK, Swanepoel W, Marx S (2018) Energ Source Part A 40(3):294–300

    CAS  Google Scholar 

  20. Patil HS, Jadhav DD, Paul A, Mulani FA, Karegaonkar SJ, Thulasiram HV (2018) Data Brief 18:1134–1141

    PubMed  PubMed Central  Google Scholar 

  21. Yang RL, Zhao XJ, Wu TT, Bilai M, Wang ZY, Luo HZ, Yang WJ (2019) Catal Commun 128:105707

    CAS  Google Scholar 

  22. Li XF, Lu ZH, Liu HW, Zhao GL, Wu H, Yuan K, Yu XG (2012) Process Biochem 47(12):1826–1831

    CAS  Google Scholar 

  23. Teng Y, Xu Y, Wang D (2009) J Mol Catal B 57(1–4):292–298

    CAS  Google Scholar 

  24. Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H (2004) Biochem Eng J 21(2):155–160

    CAS  Google Scholar 

  25. Grbavčić S, Bezbradica D, Izrael-Živković L, Avramović N, Milosavić N, Karadžić I, Knežević-Jugović Z (2011) Bioresource Technol 102(24):11226–11233

    Google Scholar 

  26. Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, Halim M (2017) AMB Express 7(1):131

    Google Scholar 

  27. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM (2011) J Biomed Biotechnol 2011(1):702179

    PubMed  PubMed Central  Google Scholar 

  28. Fatima H, Khan N, Rehman AU, Hussain Z (2014) Ferment Technol 4:112

    Google Scholar 

  29. Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) Food Bioprocess Tech 3(2):182–196

    CAS  Google Scholar 

  30. Li D, Wang B, Tan T (2006) J Mol Catal B 43(1–4):40–43

    CAS  Google Scholar 

Download references

Funding

The authors thank the financial support from the National Natural Science Foundation of China (21706088, 21808075, and 21676114), the Natural Science Foundation of Jiangsu Province (BK20170458 and BK20170459) and the Six Talent Peaks of Jiangsu Province (2018-SWYY-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Ling Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TT., Zhao, XJ., Yang, RL. et al. Catalytic Performance of a Robust Whole-Cell Biocatalyst in the Regioselective Synthesis of Helicid Esters Under Optimized Processing Conditions. Catal Lett 150, 1841–1848 (2020). https://doi.org/10.1007/s10562-020-03117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03117-y

Keywords

Navigation