Skip to main content
Log in

Kinetic Study of the Pyridine-Catalyzed Selenolactonization of 4-Pentenoic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of the pyridine-catalyzed cyclofunctionalization of 4-pentenoic acid by means of PhSeX (X = Cl, Br) have been investigated spectrophotometrically, under pseudo-first order reaction conditions. The influence of the reaction temperature, the type of cyclization reagent and used catalyst on the reaction rate and mechanism was examined. The obtained data have showed that rate constants go on increasing as the temperatures go up and with use of PhSeCl as reagent. Also, the reaction rate is directly depended on the type of the catalyst used—stronger bases with higher tendency for hydrogen bond formation (DN) are promoting reaction in more efficient way.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Janecki T (2013) Natural Lactones and Lactams: Synthesis, Occurrence and Biological Activity. Wiley VCH, Verlag, Weinheim

    Book  Google Scholar 

  2. González AG, Silva MH, Padrón JI, León F, Reyes E, Álvarez-Mon M, Pivel JP, Quintana J, Estévez F, Bermejo J (2002) J Med Chem 45:2358

    Article  Google Scholar 

  3. Li DH, Zhu TJ, Liu HB, Fang CY, Gu QQ, Zhu WM (2006) Arch Pharm Res 29:624

    Article  CAS  Google Scholar 

  4. Cateni F, Zilic J, Zacchigna M, Bonivento P, Frausin F, Scarcia V (2006) Eur J Med Chem 41:192

    Article  CAS  Google Scholar 

  5. Ma S, Shi Z, Yu Z (1999) Tetrahedron 55:12137

    Article  CAS  Google Scholar 

  6. Yanai H (2015) Green and catalytic methods for γ-lactone synthesis. In: Brahmachari G (ed) Green synthetic approaches for biologically relevant heterocycles, Elsevier, Amsterdam, pp 257–289

    Chapter  Google Scholar 

  7. Huang L, Jiang H, Qi C, Liu X (2010) J Am Chem Soc 132:17652

    Article  CAS  Google Scholar 

  8. Shu C, Liu MQ, Sun YZ, Ye LW (2012) Org Lett 14:4958

    Article  CAS  Google Scholar 

  9. Zheng M, Chen P, Huang L, Wu W, Jiang H (2017) Org Lett 19:5756

    Article  CAS  Google Scholar 

  10. He RJ, Zhu BC, Wang YG (2014) Appl Organomet Chem 28:523

    Article  Google Scholar 

  11. Oderinde MS, Hunter HN, Bremner SW, Organ MG (2012) Eur J Org Chem 2012(1):175–182

    Article  CAS  Google Scholar 

  12. Denmark SE, Burk MT (2010) Proc Natl Acad Sci USA 107:20655

    Article  CAS  Google Scholar 

  13. Shigehisa H, Hayashi M, Ohkawa H, Suzuki T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K (2016) J Am Chem Soc 138:10084

    Article  Google Scholar 

  14. Yang CG, Reich NW, Shi Z, He C (2005) Org Lett 7:4553

    Article  CAS  Google Scholar 

  15. Trend RM, Ramtohul YK, Ferreira EM, Stoltz B (2003) Angew Chem Int Ed 42:2892

    Article  CAS  Google Scholar 

  16. Niu W, Yeung YY (2015) Org Lett 177:1660

    Article  Google Scholar 

  17. Whirt T (2011) Organoselenium chemistry: synthesis and reactions. Wiley-VCH, Verlag, Weinheim

    Google Scholar 

  18. Fujita K, Murata K, Iwaoka M, Tomoda S (1995) J Chem Soc Chem Commun. https://doi.org/10.1039/C39950001641

    Article  Google Scholar 

  19. Bugarcic ZM, Petrovic BV, Rvovic MD (2008) J Mol Catal A 287:171

    Article  CAS  Google Scholar 

  20. Bugarcic ZM, Rvovic MD, Divac VM (2009) Arkivoc 14:135

    Google Scholar 

  21. Rvovic MD, Divac VM, Puchta R, Bugarčić ZM (2011) J Mol Model 17:1251

    Article  CAS  Google Scholar 

  22. Rvovic MD, Divac VM, Jankovic NZ, Bugarcic ZM (2013) Monatsh Chem 144:1227

    Article  CAS  Google Scholar 

  23. Divac VM, Rvovic MD, Bugarcic ZM (2013) React Kinet Mech Catal 110:309

    Article  CAS  Google Scholar 

  24. Divac VM, Puchta R, Bugarcic ZM (2012) J Phys Chem 116:7783

    Article  CAS  Google Scholar 

  25. Kostic MD, Divac VM, Puchta R, Bugarcic ZM (2015) Struct Chem 26:915

    Article  CAS  Google Scholar 

  26. Kostic MD, Divac VM, Bugarcic ZM (2019) J Mol Struct 1175:24

    Article  CAS  Google Scholar 

  27. Divac VM, Kostic MD, Bugarcic ZM (2019) J Mol Model 25:158

    Article  Google Scholar 

  28. Wilkins LC, Günther BAR, Walther M, Lawson JR, Wirth T, Melen RL (2016) Angew Chem 55:11292

    Article  CAS  Google Scholar 

  29. Denmark SE, Collins WR (2007) Org Lett 9:3801

    Article  CAS  Google Scholar 

  30. Espenson JH (1995) Chemical kinetics and reaction mechanism, 2nd edn. McGrow Hill, New York

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant: 172011). This research is part of the thematic multidisciplinary network SeS Redox and Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina D. Kostić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostić, M.D., Mihajlović, K. & Divac, V.M. Kinetic Study of the Pyridine-Catalyzed Selenolactonization of 4-Pentenoic Acid. Catal Lett 150, 2076–2081 (2020). https://doi.org/10.1007/s10562-020-03107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03107-0

Keywords

Navigation