Skip to main content

Advertisement

Log in

Palladium Supported on Carbon Nanoglobules as a Promising Catalyst for Selective Hydrogenation of Nitroarenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalysts 1 wt% palladium supported on carbon nanoglobules (CNGs) were shown to be highly active in the liquid-phase hydrogenation of various nitroarenes and provided nearly 100% selectivity to aromatic amines at complete conversion under mild conditions (323 K, 0.5 MPa, 1 h). The catalytic activity (in terms of turnover frequency and substrate conversion) and selectivity depend on the kind of CNGs support, catalyst preparation method and the reaction conditions (solvent nature). The Pd/CNGs catalyst can be repeatedly used while maintaining the same catalytic performance. The excellent performances of Pd/CNGs catalysts can be due to the globular morphology of the supports as well as the absence of micropores and pronounced surface defects.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Blaser HU, Steiner H, Studer M (2009) ChemCatChem 1:210

    Article  CAS  Google Scholar 

  2. Lara P, Philippot K (2014) Catal Sci Technol 4:2445

    Article  CAS  Google Scholar 

  3. Song J, Huang ZF, Pan L, Li K, Zhang X, Wang L, Zou JJ (2018) Appl Catal B Environ 227:386

    Article  CAS  Google Scholar 

  4. Gӧksu H, Sert H, Kilbas B, Sen F (2017) Curr Org Chem 21:794

    Article  CAS  Google Scholar 

  5. Nishimura S (2001) Handbook of heterogeneous catalytic hydrogenation for organic synthesis. Wiley, New York

    Google Scholar 

  6. Travis AS (2007) In: Rappoport Z (ed) Chemistry of anilines. Part 1. Wiley, Chichester (Ch. 13)

    Google Scholar 

  7. Vogt PF, Gerulis JJ (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  8. Rana S, Parida KM (2012) Catal Sci Technol 2:979

    Article  CAS  Google Scholar 

  9. Zhao Z, Yang H (2015) J Mol Catal A: Chem 398:268

    Article  CAS  Google Scholar 

  10. Ren Y, Wei H, Yin G, Zhang L, Wang A, Zhang T (2017) Chem Commun 53:1969

    Article  CAS  Google Scholar 

  11. Jiao N, Li Z, Xia C, Liu J (2017) ChemistrySelect 2:4545

    Article  CAS  Google Scholar 

  12. Mironenko RM, Belskaya OB, Gulyaeva TI, Trenikhin MV, Likholobov VA (2018) Catal Commun 114:46

    Article  CAS  Google Scholar 

  13. Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253:337

    Article  CAS  Google Scholar 

  14. Su DS (2013) In: Serp P, Philippot K (eds) Nanomaterials in catalysis. Wiley-VCH, Weinheim (Ch. 9)

    Google Scholar 

  15. Zhu J, Holmen A, Chen D (2013) ChemCatChem 5:378

    Article  CAS  Google Scholar 

  16. Su DS, Perathoner S, Centi G (2013) Chem Rev 113:5782

    Article  CAS  PubMed  Google Scholar 

  17. Bailón-García E, Maldonado-Hódar FJ, Pérez-Cadenas AF, Carrasco-Marín F (2013) Catalysts 3:853

    Article  CAS  Google Scholar 

  18. Lam E, Luong JHT (2014) ACS Catal 4:3393

    Article  CAS  Google Scholar 

  19. Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  20. Blaser HU, Indolese A, Schnyder A, Steiner H, Studer M (2001) J Mol Catal A: Chem 173:3

    Article  CAS  Google Scholar 

  21. Monguchi Y, Ichikawa T, Sajiki H (2017) Chem Pharm Bull 65:2

    Article  CAS  Google Scholar 

  22. Liu X, Astruc D (2018) Adv Synth Catal 360:3426

    Article  CAS  Google Scholar 

  23. Oosthuizen RS, Nyamori VO (2011) Platinum Met Rev 55:154

    Article  CAS  Google Scholar 

  24. Mironenko RM, Belskaya OB, Likholobov VA (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.03.023(In press)

    Article  Google Scholar 

  25. Lisitsyn AS, Parmon VN, Duplyakin VK, Likholobov VA (2006) Russ Chem J 50:140 (in Russian)

    Google Scholar 

  26. Toebes M (2004) Carbon nanofibers as catalyst support for noble metals. Utrecht University, Utrecht

    Google Scholar 

  27. Toebes ML, van Dillen JA, de Jong KP (2001) J Mol Catal A: Chem 173:75

    Article  CAS  Google Scholar 

  28. Semikolenov VA (1992) Russ Chem Rev 61:168

    Article  Google Scholar 

  29. Arunajatesan V, Chen B, Möbus K, Ostgard DJ, Tacke T, Wolf D (2013) In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, Hoboken (Ch. 15)

    Google Scholar 

  30. Voll M, Kleinschmit P (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  31. Simonov PA, Troitskii SYu, Likholobov VA (2000) Kinet Catal 41:255

    Article  CAS  Google Scholar 

  32. Yakukhnov SA, Pentsak EO, Galkin KI, Mironenko RM, Drozdov VA, Likholobov VA, Ananikov VP (2018) ChemCatChem 10:1869

    Article  CAS  Google Scholar 

  33. Gurrath M, Kuretzky T, Boehm HP, Okhlopkova LB, Lisitsyn AS, Likholobov VA (2000) Carbon 38:1241

    Article  CAS  Google Scholar 

  34. Pinna F, Menegazzo F, Signoretto M, Canton P, Fagherazzi G, Pernicone N (2001) Appl Catal A Gen 219:195

    Article  CAS  Google Scholar 

  35. Fagherazzi G, Canton P, Riello P, Pernicone N, Pinna F, Battagliarin M (2000) Langmuir 16:4539

    Article  CAS  Google Scholar 

  36. Bergeret G, Gallezot P (2013) In: Ertl G, Knözinger H, Schüth F, Knözinger H, Weitkamp J, Figueiredo JL (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim (Ch. 3.1.2)

    Google Scholar 

  37. Stein SE, Mikaia A, Zaikin V, Zhu D, Milman B, Babishok V, Zenkevich I, Linstrom P, Mirokhin Y, Tchekhovskoi D, Mallard WG, Sparkman OD, Sparkman JA (2005) NIST/EPA/NIH Mass Spectral Library (NIST 05) and NIST Mass Spectral Search Program, v.2.0d, National Institute of Standards and Technology, Gaithersburg, MD

  38. Belskaya OB, Mironenko RM, Talsi VP, Rodionov VA, Gulyaeva TI, Sysolyatin SV, Likholobov VA (2018) Catal Today 301:258

    Article  CAS  Google Scholar 

  39. Ferrer V, Moronta A, Sánchez J, Solano R, Bernal S, Finol D (2005) Catal Today 107:487

    Article  CAS  Google Scholar 

  40. Krishnankutty N, Vannice MA (1995) J Catal 155:312

    Article  CAS  Google Scholar 

  41. Tengco JMM, Lugo-José YK, Monnier JR, Regalbuto JR (2015) Catal Today 246:9

    Article  CAS  Google Scholar 

  42. Kleemann A, Engel J, Kutscher B, Reichert D (2001) Pharmaceutical substances: syntheses, patents, applications. Thieme, Stuttgart

    Google Scholar 

  43. Vardanyan R, Hruby V (2016) Synthesis of best-seller drugs. Elsevier, Amsterdam

    Google Scholar 

  44. Haber F (1898) Z Elektrochem Angew Phys Chem 4:506 (in German)

    Article  CAS  Google Scholar 

  45. Zhao Z, Yang H, Li Y (2014) RSC Adv 4:22669

    Article  CAS  Google Scholar 

  46. Huang H, Wang X, Sheng Y, Chen C, Zou X, Shang X, Lu X (2018) RSC Adv 8:8898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takasaki M, Motoyama Y, Higashi K, Yoon SH, Mochida I, Nagashima H (2008) Org Lett 10:1601

    Article  CAS  PubMed  Google Scholar 

  48. Motoyama Y, Lee Y, Tsuji K, Yoon SH, Mochida I, Nagashima H (2011) ChemCatChem 3:1578

    Article  CAS  Google Scholar 

  49. Illich GM, Robinson RM, Smart WD, Garven FC (1962) US Patent 3037046

  50. Obraztsova II, Efimov OA (2004) Russ J Appl Chem 77:511

    Article  CAS  Google Scholar 

  51. Visentin F, Puxty G, Kut OM, Hungerbühler K (2006) Ind Eng Chem Res 45:4544

    Article  CAS  Google Scholar 

  52. Simonov PA, Romanenko AV, Likholobov VA (2014) Solid Fuel Chem 48:364

    Article  CAS  Google Scholar 

  53. Huang H, Wang X, Tan M, Chen C, Zou X, Ding W, Lu X (2016) ChemCatChem 8:1485

    Article  CAS  Google Scholar 

  54. Abdullaev MG, Gebekova ZG (2016) Pet Chem 56:146

    Article  CAS  Google Scholar 

  55. Arai N, Onodera N, Dekita A, Hori J, Ohkuma T (2015) Tetrahedron Lett 56:3913

    Article  CAS  Google Scholar 

  56. Dyson PJ, Jessop PG (2016) Catal Sci Technol 6:3302

    Article  CAS  Google Scholar 

  57. Palumbo C, Tiozzo C, Ravasio N, Psaro R, Carniato F, Bisio C, Guidotti M (2016) Catal Sci Technol 6:3832

    Article  CAS  Google Scholar 

  58. Feng G, Liu Z, Chen P, Lou H (2014) RSC Adv 4:49924

    Article  CAS  Google Scholar 

  59. Takagi H, Isoda T, Kusakabe K, Morooka S (1999) Energy Fuels 13:1191

    Article  CAS  Google Scholar 

  60. Hu Z, Tan S, Mi R, Li X, Li D, Yang B (2018) Catal Lett 148:1490

    Article  CAS  Google Scholar 

  61. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  62. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  63. Ren B, Zhao M, Dong L, Li G (2014) Catal Commun 50:92

    Article  CAS  Google Scholar 

  64. Johnstone RAW, Wilby AH, Entwistle ID (1985) Chem Rev 85:129

    Article  CAS  Google Scholar 

  65. Wang D, Astruc D (2015) Chem Rev 115:6621

    Article  CAS  PubMed  Google Scholar 

  66. Xiang Y, Li X, Lu C, Ma L, Zhang Q (2010) Appl Catal A Gen 375:289

    Article  CAS  Google Scholar 

  67. Zhou L, Gu H, Yan X (2009) Catal Lett 132:16

    Article  CAS  Google Scholar 

  68. Chaubal NS, Sawant MR (2007) J Mol Catal A: Chem 261:232

    Article  CAS  Google Scholar 

  69. PubChem Compound Database, CID 8078. https://pubchem.ncbi.nlm.nih.gov/compound/Cyclohexane. Accessed Sept 2019

  70. Hunger K (ed) (2003) Industrial dyes chemistry, properties, applications. Wiley-VCH, Weinheim

    Google Scholar 

  71. Unger TA (1996) Pesticide synthesis handbook. Noyes Publications, Park Ridge

    Google Scholar 

  72. Charushin VN, Gorbunov EB, Rusinov GL, Likholobov VA, Rodionov VA (2011) RU Patent 2434005 (in Russian)

  73. Kraus M (1967) Adv Catal 17:75

    CAS  Google Scholar 

  74. Galvagno S, Donato A, Neri G, Pietropaolo R, Poltarzewski Z (1987) J Mol Catal 42:379

    Article  CAS  Google Scholar 

  75. Cárdenas-Lizana F, de Pedro ZM, Gómez-Quero S, Keane MA (2010) J Mol Catal A: Chem 326:48

    Article  CAS  Google Scholar 

  76. Campos C, Torres C, Oportus M, Peña MA, Fierro JLG, Reyes P (2013) Catal Today 213:93

    Article  CAS  Google Scholar 

  77. Jaffé HH (1953) Chem Rev 53:191

    Article  Google Scholar 

  78. Sun J, Fu Y, He G, Sun X, Wang X (2014) Catal Sci Technol 4:1742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. V. Maevskaya, Dr. R. R. Izmailov, I. V. Muromtsev, Dr. A. B. Arbuzov, E. N. Kudrya, Dr. V. P. Talsi and S. N. Evdokimov for their help with experiments. Besides, the authors are grateful to Dr. A. S. Kostyuchenko (Omsk State Technical University, Omsk, Russia) for the supply of some nitroarenes. The authors also gratefully acknowledge Dr. G. L. Rusinov (I. Ya. Postovskiy Institute of Organic Synthesis, Yekaterinburg, Russia) for the supply of 1-(2,3-difluoro-6-nitrophenoxy)acetone.

Funding

This work was supported by the Russian Foundation for Basic Research (Grant Number 16-29-10742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Mironenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironenko, R.M., Belskaya, O.B., Stepanova, L.N. et al. Palladium Supported on Carbon Nanoglobules as a Promising Catalyst for Selective Hydrogenation of Nitroarenes. Catal Lett 150, 888–900 (2020). https://doi.org/10.1007/s10562-019-02974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02974-6

Keywords

Navigation