Skip to main content
Log in

Polymeric Ionic Liquid Grafted on Silica for Efficient Conversion of CO2 into Cyclic Carbonates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

On the basis of efficient and recyclable criteria for catalytic conversion of CO2 into cyclic carbonates, functionalized polymeric ionic liquids grafted onto the silica (PIL@SiO2) are explored by the polymeric method herein. Among all the prepared PIL@SiO2, the PIL@SiO2 loaded with a high mass fraction (50%) of PIL is the best in catalytic activity, achieving 91% PO conversion, nearly 50% saved than the non-grafted PIL. In addition, the PIL@SiO2 exhibits higher performance than PILs under identical reaction conditions. Subsequent studies concerning recyclability confirm that the as-prepared catalyst is stable after 5 times recycle without obvious loss in activity. This grafting and polymerization process provides an efficient and sustainable way of CO2 conversion in the long term.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  CAS  Google Scholar 

  2. Xiao L, Lv D, Wu W (2011) Brønsted acidic ionic liquids mediated metallic salts catalytic system for the chemical fixation of carbon dioxide to form cyclic carbonates. Catal Lett 141(12):1838–1844

    Article  CAS  Google Scholar 

  3. Brogan APS, Bui-Le L, Hallett JP (2018) Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nat Chem 10(8):859–865

    Article  CAS  PubMed  Google Scholar 

  4. Ren S, Hou Y, Zhang K, Wu W (2018) Ionic liquids: functionalization and absorption of SO2. Green Energy Environ 3(3):179–190

    Article  Google Scholar 

  5. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  PubMed  Google Scholar 

  6. Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621

    Article  CAS  PubMed  Google Scholar 

  7. Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302(5646):792–793

    Article  PubMed  Google Scholar 

  8. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083

    Article  CAS  PubMed  Google Scholar 

  9. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  PubMed  Google Scholar 

  10. Darensbourg DJ (2007) Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107(6):2388–2410

    Article  CAS  PubMed  Google Scholar 

  11. Kumar S, Jain SL, Sain B (2012) Metal acetylacetonates as highly efficient and cost effective catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. Catal Lett 142(5):615–618

    Article  CAS  Google Scholar 

  12. Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41(4):1462–1484

    Article  CAS  PubMed  Google Scholar 

  13. Kleij A, Rintjema J (2016) Substrate-assisted carbon dioxide activation as a versatile approach for heterocyclic synthesis. Synthesis 48(22):3863–3878

    Article  CAS  Google Scholar 

  14. Buttner H, Longwitz L, Steinbauer J et al (2017) Recent developments in the synthesis of cyclic carbonates from epoxides and CO2. Top Curr Chem (Cham) 375(3):50

    Article  CAS  Google Scholar 

  15. Dai W-L, Luo S-L, Yin S-F et al (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A 366(1):2–12

    Article  CAS  Google Scholar 

  16. Corma A (2016) Heterogeneous catalysis: understanding for designing, and designing for applications. Angew Chem Int Ed Engl 55(21):6112–6113

    Article  CAS  PubMed  Google Scholar 

  17. Ai J, Min X, Gao CY et al (2017) A copper-phosphonate network as a high-performance heterogeneous catalyst for the CO2 cycloaddition reactions and alcoholysis of epoxides. Dalton Trans 46(20):6756–6761

    Article  CAS  PubMed  Google Scholar 

  18. Jiang H-F, Wang AZ, Liu H-L et al (2008) Reusable polymer-supported amine-copper catalyst for the formation of α-alkylidene cyclic carbonates in supercritical carbon dioxide. Eur J Org Chem 2008(13):2309–2312

    Article  CAS  Google Scholar 

  19. Sekine K, Yamada T (2016) Silver-catalyzed carboxylation. Chem Soc Rev 45(16):4524–4532

    Article  CAS  PubMed  Google Scholar 

  20. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12(9):1514

    Article  CAS  Google Scholar 

  21. Luo R, Zhou X, Chen S et al (2014) Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by salen aluminum complexes with built-in “CO2 capture” capability under mild conditions. Green Chem 16(3):1496–1506

    Article  CAS  Google Scholar 

  22. Zanon A, Chaemchuen S, Mousavi B et al (2017) 1 Zn-doped ZIF-67 as catalyst for the CO2 fixation into cyclic carbonates. J CO2 Util 20:282–291

  23. Jagtap SR, Bhanushali MJ, Panda AG et al (2006) Synthesis of cyclic carbonates from carbon dioxide and epoxides using alkali metal halide supported liquid phase catalyst. Catal Lett 112(1):51–55

    Article  CAS  Google Scholar 

  24. D’Elia V, Dong H, Rossini AJ et al (2015) Cooperative effect of monopodal silica-supported niobium complex pairs enhancing catalytic cyclic carbonate production. J Am Chem Soc 137(24):7728–7739

    Article  PubMed  CAS  Google Scholar 

  25. Su Q, Qi Y, Yao X et al (2018) Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates. Green Chem 20(14):3232–3241

    Article  CAS  Google Scholar 

  26. Oliveira AC, Fierro JLG, Valentini A et al (2003) Non-toxic Fe-based catalysts for styrene synthesis—the effect of salt precursors and aluminum promoter on the catalytic properties. Catal Today 85(1):49–57

    Article  CAS  Google Scholar 

  27. Lin D, Yuen PY, Liu Y et al (2018) A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30(32):1802661

    Article  CAS  Google Scholar 

  28. Pourjavadi A, Hosseini SH, Doulabi M et al (2012) Multi-layer functionalized poly(ionic liquid) coated magnetic nanoparticles: highly recoverable and magnetically separable brønsted acid catalyst. ACS Catal 2(6):1259–1266

    Article  CAS  Google Scholar 

  29. North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem Int Ed 48(16):2946–2948

    Article  CAS  Google Scholar 

  30. Sun J, Wang J, Cheng W et al (2012) Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem 14(3):654–660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA 21030500, National Natural Science Foundation of China (21676274, 21606237, 21890762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Cheng.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, T., Su, Q., Shi, Z. et al. Polymeric Ionic Liquid Grafted on Silica for Efficient Conversion of CO2 into Cyclic Carbonates. Catal Lett 149, 2647–2655 (2019). https://doi.org/10.1007/s10562-019-02826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02826-3

Keywords

Navigation