Skip to main content
Log in

Carbon Sphere Anchored Hydroxylamino-Decorated Ionic Liquids for CO2 Fixation into Cyclic Carbonates at Mild Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of carbon sphere supported with adjustable alkyl length substitutes polymeric ionic liquids bearing hydroxylamino-anchored functional groups by covalent connection were fabricated from copolymerization of carbon sphere with vinyl based monomeric ionic liquids, which were constructed from 1-glycidyl-3-vinylimidazolium bromide and alkyl amines. The carbon sphere hybrid polymeric ionic liquids were characterized by FT-IR, SEM–EDS, N2 adsorption/desorption isotherm, elemental analysis, 13C MAS NMR and XPS, which were candidated as heterogeneous catalysts for CO2-epoxide cycloaddition reactions to product cyclic carbonates at mild conditions without co-catalyst and metal ion. The introduced functional groups on carbon sphere could accelerate the reaction process and yields of above 90% were obtained for various cyclic carbonates under optimized conditions. Finally, kinetic experiments were also carried out to reveal reaction mechanism and the activated energy was determined as 114.9 kJ/mol. Therefore, this study provides a new approach to fabricate multifunctional heterogeneous materials for coupling reaction of CO2 under mild conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ekwurzel B, Boneham J, Dalton MW, Heede R, Mera RJ, Allen MR, Frumhoff PC (2017) The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Clim Change 144:579–590. https://doi.org/10.1007/s10584-017-1978-0

    Article  Google Scholar 

  2. Sahoo PK, Zhang Y, Das S (2021) CO2-promoted reactions an emerging concept for the synthesis of fine chemicals and pharmaceuticals. ACS Catal 11:3414–3442. https://doi.org/10.1021/acscatal.0c05681

    Article  CAS  Google Scholar 

  3. Truong CC, Mishra DK (2020) Recent advances in the catalytic fixation of carbon dioxide to value-added. J CO2 Util 41:101252. https://doi.org/10.1016/j.jcou.2020.101252

    Article  CAS  Google Scholar 

  4. Luo LP, Lamb KJ, North M (2021) Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chem 23:77–118. https://doi.org/10.1039/D0GC03465G

    Article  Google Scholar 

  5. Limburg B, Cristofòl À, Monica FD, Kleij AW (2020) Unlocking the potential of substrate-directed CO2 activation and conversion: pushing the boundaries of catalytic cyclic carbonates and carbamate formation. ChemSusChem 13:6056–6065. https://doi.org/10.1002/cssc.202002246

    Article  CAS  PubMed  Google Scholar 

  6. Schӓffer B, Schӓffner F, Verevkin SP, Bӧrner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581. https://doi.org/10.1021/cr900393d

    Article  CAS  Google Scholar 

  7. Yadav N, Seidi F, Gobbo SD, D’Elia V, Crespy D (2019) Versatile functionalization of polymer nanoparticles with carbonate groups via hydroxyurethane linkages. Polym Chem 10:3571–3585. https://doi.org/10.1039/c9py00597h

    Article  CAS  Google Scholar 

  8. Mao P, Dai WL, Yang WY, Luo S, Zhang Y, Mao J, Luo XB, Zou JP (2018) Polymer nanoparticles grafted zinc-containing ionic liquids A highly efficient and recyclable catalyst for cooperative cycloaddition of CO2 with epoxides. J CO2 Util 28:96–106. https://doi.org/10.1016/j.jcou.2018.09.017

    Article  CAS  Google Scholar 

  9. Bavykina A, Kolobow N, Khan IS, Bau JA, Ramirez A, Gascon J (2020) Metal–organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem Rev 120:8468–8535. https://doi.org/10.1021/acs.chemrev.9b00685

    Article  CAS  PubMed  Google Scholar 

  10. Kessaratikoon T, Theerathanagorn T, Crespy D, D’Elia V (2023) Organocatalytic polymers from affordable and readily available building blocks for the cycloaddition of CO2 to epoxides. J Org Chem 88:4894–4924. https://doi.org/10.1021/acs.joc.2c02447

    Article  CAS  PubMed  Google Scholar 

  11. Cheng HY, Wang T (2021) Covalent organic frameworks in catalytic organic synthesis. Adv Syn Catal 363:144–193. https://doi.org/10.1002/adsc.202001086

    Article  CAS  Google Scholar 

  12. Jaroonwatana W, Theerathanagorn T, Theerasilp M, Gobbo SD, Yiamsawas D, D’Elia V, Crespy D (2021) Nanoparticles of aromatic biopolymers catalyzed CO2 cycloaddition to epoxides under atmospheric conditions. Sustain Energy Fuel 5:5431–5445. https://doi.org/10.1039/d1se01305j

    Article  CAS  Google Scholar 

  13. Guo L, Dou R, Wu YQ, Zhang R, Wang L, Wang Y, Gong ZC, Chen JL, Wu XQ (2019) From lignin waste to efficient catalyst: illuminating the impact of lignin structure on catalytic activity of cycloaddition reaction. ACS Sustain Chem Eng 7:16585–16594. https://doi.org/10.1021/acssuschemeng.9b03909

    Article  CAS  Google Scholar 

  14. Yang YY, Li H, Pei SP, Liu F, Feng W, Zhang YM (2020) Highly efficient Co centers functionalized by nitrogen-doped carbon for the chemical fixation of CO2. RSC Adv 10:42408–42412. https://doi.org/10.1039/D0RA05238H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shao XZ, Zhang YJ, Miao XY, Wang W, Liu ZF, Liu Q, Zhang TL, Ji JW, Ji XH (2021) Renewable N-doped microporous carbons from walnut shells for CO2 capture and conversion. Sustain Energy Fuel 5:4701–4709. https://doi.org/10.1039/D1SE01000J

    Article  CAS  Google Scholar 

  16. Wang X, Shi L, Chen YL, Yang CK, Yang L, Sun JM (2021) Facile synthesis of carboxyl- and hydroxyl-functional carbon nitride catalyst for efficient CO2 cycloaddition. Mol Catal 515:111924. https://doi.org/10.1016/j.mcat.2021.111924

    Article  CAS  Google Scholar 

  17. Chand H, Choudhary P, Kumar A, Kumar A, Krishnan V (2021) Atmospheric pressure conversion of carbon dioxide to cyclic carbonates using a metal-free Lewis acid-base bifunctional heterogeneous catalyst. J CO2 Util 51:101646. https://doi.org/10.1016/j.jcou.2021.101646

    Article  CAS  Google Scholar 

  18. Zhu J, Diao T, Wang W, Xu X, Sun X, Carabineiro SA, Zhao Z (2017) Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl Catal B 219:92–100. https://doi.org/10.1016/j.apcatb.2017.07.041

    Article  CAS  Google Scholar 

  19. Song XH, Wu YF, Pan DH, Cai FF, Xiao GM (2017) Carbon nitride as efficient catalyst for chemical fixation of CO2 into chloropropene carbonate: promotion effect of Cl in epichlorohydrin. Mol Catal 436:228–236. https://doi.org/10.1016/j.mcat.2017.04.027

    Article  CAS  Google Scholar 

  20. Zhang S, Hang H, Cao FX, Ma YY, Qu YQ (2018) Catalytic behavior of graphene oxides for converting CO2 into cyclic carbonates at one atmospheric pressure. ACS Sustain Chem Eng 6:4204–4211. https://doi.org/10.1021/acssuschemeng.7b04600

    Article  CAS  Google Scholar 

  21. Huang ZJ, Li FB, Chen BF, Yuan GQ (2016) Cycloaddition of CO2 and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride. Catal Sci Technol 6:2942–2948. https://doi.org/10.1039/C5CY01805F

    Article  CAS  Google Scholar 

  22. Xu J, Shang JK, Jiang Q, Wang Y, Li YX (2016) Facile alkali-assisted synthesis of g-C3N4 materials and their high-performance catalytic application in solvent-free cycloaddition of CO2 to epoxides. RSC Adv 6:55382–55392. https://doi.org/10.1039/C6RA10509B

    Article  CAS  Google Scholar 

  23. Biswas T, Mahalingam V (2017) g-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions. New J Chem 41:14839–14842. https://doi.org/10.1039/C7NJ03720A

    Article  CAS  Google Scholar 

  24. Xu J, Wu F, Jiang Q, Li YX (2015) Mesoporous carbon nitride grafted with n-bromobutane: a high-performance heterogeneous catalyst for the solvent-free cycloaddition of CO2 to propylene carbonate. Catal Sci Technol 5:447–454. https://doi.org/10.1039/C4CY00770K

    Article  CAS  Google Scholar 

  25. Xu J, Wu F, Jiang Q, Shang JK, Li YX (2015) Metal halides supported on mesoporous carbon nitride as efficient heterogeneous catalysts for the cycloaddition of CO2. J Mol Catal A 403:77–83. https://doi.org/10.1016/j.molcata.2015.03.024

    Article  CAS  Google Scholar 

  26. Gu YQ, Ping R, Liu FS, Zhang GY, Liu MS, Sun JM (2021) Novel carbon nitride/metal oxide nanocomposites as efficient and robust catalysts for coupling of CO2 and epoxides. Ind Eng Chem Res 60:5723–5732. https://doi.org/10.1021/acs.iecr.0c05966

    Article  CAS  Google Scholar 

  27. Lan DH, Wang HT, Chen L, Au CT, Yin SF (2016) Phosphorous-modified bulk graphitic carbon nitride: facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. Carbon 100:81–89. https://doi.org/10.1016/j.carbon.2015.12.098

    Article  CAS  Google Scholar 

  28. Oh Y, Le VD, Maiti UN, Hwang JO, Park WJ, Lim J, Lee KE, Bae YS, Kim YH, Kim SO (2015) Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 9:9148–9157. https://doi.org/10.1021/acsnano.5b03400

    Article  CAS  PubMed  Google Scholar 

  29. Su Q, Sun J, Wang JQ, Yang ZF, Cheng WG, Zhang SJ (2014) Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal Sci Technol 4:1556–1662. https://doi.org/10.1039/C3CY00921A

    Article  CAS  Google Scholar 

  30. Huang ZJ, Li FB, Chen BF, Lu T, Yuan Y, Yuan GQ (2013) Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Appl Catal B 136–137:269–277. https://doi.org/10.1016/j.apcatb.2013.01.057

    Article  CAS  Google Scholar 

  31. Nazeri MT, Javanbakht S, Ramezani M, Shaabani A (2022) A facile and green synthesis of cobalt phthalocyanine-conjugated multiwall carbon nanotube by the Ugi reaction: as an efficient CO2 fixation catalyst. J. Taiwan Inst Chem Eng 136:104428. https://doi.org/10.1016/j.jtice.2022.104428

    Article  CAS  Google Scholar 

  32. Chen JJ, Wu W, Mi JX, Fan C, Wang Z, Chen XP, Wang GM, Huang ZL, Li JH (2022) Efficient and simple strategy to obtain ordered mesoporous carbons with abundant structural base N sites toward CO2 selective capture and catalytic conversion. ACS Sustain Chem Eng 10:5175–5182. https://doi.org/10.1021/acssuschemeng.1c08589

    Article  CAS  Google Scholar 

  33. Cheng BH, Deng LJ, Jiang J, Jiang H (2022) Catalytic cycloaddition of CO2 to epoxides by the synergistic effect of acidity and alkalinity in a functionalized biochar. Chem Eng J 442:136265. https://doi.org/10.1016/j.cej.2022.136265

    Article  CAS  Google Scholar 

  34. Hui W, Xu XY, Mao FF, Shi L, Wang HJ (2022) N/O-rich multilayered ultramicroporous carbon for highly efficient capture and conversion of CO2 under atmospheric conditions. Sustain Energy Fuel 6:3208–3219. https://doi.org/10.1039/D2SE00469K

    Article  CAS  Google Scholar 

  35. Hsan N, Dutta PK, Kumar S, Koh J (2022) Arginine containing chitosan-graphene oxide aerogels for highly efficient carbon capture and fixation. J CO2 Util 59:101958. https://doi.org/10.1016/j.jcou.2022.101958

    Article  CAS  Google Scholar 

  36. Wang RJ, Wan JY, Guo HD, Tian B, Li SJ, Li J, Liu SX, James TD, Chen ZJ (2023) All in one carbon dots-based catalyst for converting CO2 to cyclic carbonates. Carbon 211:118118. https://doi.org/10.1016/j.carbon.2023.118118

    Article  CAS  Google Scholar 

  37. Zhu FY, Qiu HC, Wang F, Zhang X, Lu GP, Lin YM, Huang H (2023) Bio-inspired iron-based carbonic anhydrase mimic for CO2 hydration and conversion. ACS Sustain Chem Eng 11:7388–7397. https://doi.org/10.1021/acssuschemeng.3c00209

    Article  CAS  Google Scholar 

  38. Campisciano V, Valentino L, Morena A, Santiago-Porillo A, Saladino N, Guttadauria M, Aprile C, Giacalone F (2022) Carbon nanotube supported aluminum porphyrin-imidaolium bromide crosslinked copolymer: a synergistic bifunctional catalyst for CO2 conversion. J CO2 Util 57:101884. https://doi.org/10.1016/j.jcou.2022.101884

    Article  CAS  Google Scholar 

  39. Chang T, Li XP, Hao YJ, Kang LW, Tian T, Fu XY, Zhu Z, Panchal B, Qin SJ (2021) Pyrene-based ammonium bromides combined with g-C3N4 for the synergistically enhanced fixation reaction of CO2 and epoxides. RSC Adv 11:30222–30228. https://doi.org/10.1039/D1RA05328K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghosh A, Reddy GN, Siddhique M, Chatterjee PKS, Bhattacharjee S, Maitra R, Lyubimov SE, Arzumanyan AV, Naumkin A, Bhaumik A, Chowdhury B (2022) Fabrication of a hollow sphere N, S co-doped bifunctional carbon carbon catalyst for sustainable fixation of CO2 to cyclic carbonates. Green Chem 24:1673–1692. https://doi.org/10.1039/d1gc04153c

    Article  CAS  Google Scholar 

  41. Riveiro MS, Zanatta M, Corvo MC (2022) Ionic liquids and biomass as carbon precursors: synergistically answering a call for CO2 capture and conversion. Fuel 327:125164. https://doi.org/10.1016/j.fuel.2022.125164

    Article  CAS  Google Scholar 

  42. Zhang YP, Liang HG, Li XY, Li QF, Wang JW (2022) Melem based mesoporous metal-free catalyst for cycloaddition of CO2 to cyclic carbonate. J CO2 Util 64:102173. https://doi.org/10.1016/j.jcou.2022.102173

    Article  CAS  Google Scholar 

  43. Polidoro D, Perosa A, Rodríguez-Castellón E, Canton P, Castoldi L, Rodríguez-Padrón D, Selva M (2022) Metal-free N-doped carbons for solvent-less CO2 fixation reactions: a shrimp shell valorization opportunity. ACS Sustain Chem Eng 10:13835–13848. https://doi.org/10.1021/acssuschemeng.2c04443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaemchuen S, Hou XT, Cheng ZH, Zhou K, Zhuiykov S, Verpoort F (2023) Thermal solid–solid transformation synthesis of zinc anchored in hierarchical porous N-doped carbon for efficient CO2 applications. Energy Fuel 37:2188–2200. https://doi.org/10.1021/acs.energyfuels.2c03949

    Article  CAS  Google Scholar 

  45. Morena A, Campisciano V, Comes A, Liotta LF, Gruttadauria M, Aprile C, Giacalone F (2021) A study on the stability of carbon nanoforms-polyimidazolium network hybrids in the conversion of CO2 into cyclic carbonates: increase in catalytic activity after reuse. Nanomaterial 11:2243. https://doi.org/10.3390/nano11092243

    Article  CAS  Google Scholar 

  46. Xu J, Gan YL, Pei JJ, Xue B (2020) Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl functionalized graphitic carbon nitride material. Mol Catal 491:110979. https://doi.org/10.1016/j.mcat.2020.110979

    Article  CAS  Google Scholar 

  47. Buaki-Sogó M, Vivian A, Bivona LA, García H, Gruttadauria M, Aprile C (2016) Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catal Sci Technol 6:8418–8427. https://doi.org/10.1039/C6CY01068G

    Article  CAS  Google Scholar 

  48. Zhang YY, Han QQ, Pan SF, Kun X, Mi JX, Liu FJ, Cao YN, Au C, Jiang LL (2019) Biomass-derived hierarchically porous carbons abundantly decorated with nitrogen sites for efficient CO2 catalytic utilization. Ind Eng Chem Res 58:7980–7988. https://doi.org/10.1021/acs.iecr.9b00981

    Article  CAS  Google Scholar 

  49. Calabrese C, Liotta LF, Carbonell E, Giacalone F, Gruttadauri M, Aprile C (2017) Imidazolium-functionalized carbon nanohorns for the conversion of carbon dioxide: unprecedented increase of catalytic activity after recyling. ChemSusChem 10:1202–1209. https://doi.org/10.1002/cssc.201601427

    Article  CAS  PubMed  Google Scholar 

  50. Arayachukiat S, Kongtes C, Barthel A, Vummaleti SVC, Poater A, Wannakao S, Cavallo L, D’Elia V (2017) Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions. ACS Sustain Chem Eng 5:6392–6397. https://doi.org/10.1021/acssuschemeng.7b01650

    Article  CAS  Google Scholar 

  51. Theerathanagorn T, Vidal-López A, Comas-Vives A, Poater A, D’Elia V (2023) Cycloaddition of CO2 to epoxides “around water a strategy to apply and recycle efficient water watersoluble bio-based organocatalysts in biphasic media. Green Chem 25:4336–4349. https://doi.org/10.1039/d2gc04589c

    Article  CAS  Google Scholar 

  52. Samikannu A, Konwar LJ, Maki-Arvela P, Mikkola J (2019) Renewable N-doped active carbons as efficient catalysts for the direct synthesis of cyclic carbonates from epoxides and CO2. Appl Catal B 241:41–51. https://doi.org/10.1061/j.apctab.2018.09019

    Article  CAS  Google Scholar 

  53. Zhang JW, Li XP, Zhu Z, Chang T, Fu XY, Hao YJ, Meng XC, Panchal B, Qin SJ (2021) Hydroxylamino-anchored poly (ionic liquid)s for CO2 fixation into cyclic carbonates at mild conditions. Adv Sustain Syst 5:2000133. https://doi.org/10.1002/adsu.202000133

    Article  CAS  Google Scholar 

  54. Hao YJ, Yan XL, Zhu Z, Chang T, Meng XC, Fu XY, Panchal B, Qin SJ (2021) Nitrogen-rich covalent organic polymers and potassium iodide for efficient chemical fixation of CO2 into epoxides under mild conditions. Sustain Energy Fuel 5:2943–2951. https://doi.org/10.1039/D1SE00251A

    Article  CAS  Google Scholar 

  55. Valverde D, Porcar R, Lozano P, García-Verdugo E, Luis SV (2021) Multifunctional polymers based on ionic liquid and rose bengal fragments for the conversion of CO2 to carbonates. ACS Sustain Chem Eng 9:2309–2318. https://doi.org/10.1021/acssuschemeng.0c08388

    Article  CAS  Google Scholar 

  56. Hao YJ, Yan XL, Chang T, Liu XH, Kang LW, Zhu Z, Panchal B, Qin SJ (2022) Hydroxyl-anchored covalent organic crown-based polymers for CO2 fixation into cyclic carbonates under mild conditions. Sustain Energy Fuel 6:121–127. https://doi.org/10.1039/D1SE01120K

    Article  CAS  Google Scholar 

  57. Li NN, Qin SJ, Hao YJ, Wang XL, Chang T, Liu XB, Zhang YH, Panchal B, Zhu Z (2023) Nanoarchitectonics of polymeric crown-ether analog of Troger base combined with potassium iodide and acids synergy in fixation of CO2 and epoxides. Mol Catal 545:113241. https://doi.org/10.1016/j.mcat.2023.113241

    Article  CAS  Google Scholar 

  58. Chang T, Yan XL, Li Y, Hao YJ, Fu XY, Liu XH, Panchal B, Qin SJ, Zhu Z (2022) Quaternary ammonium immobilized PAMAM as efficient catalysts for conversion of carbon dioxide. J CO2 Util 58:101913. https://doi.org/10.1016/j.jcou.2022.101913

    Article  CAS  Google Scholar 

  59. Chang T, Gao XR, Bian L, Fu XY, Yuan MX, Jiang HW (2015) Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids. Chin J Catal 36:408–413. https://doi.org/10.1016/S1872-2067(14)60227-8

    Article  CAS  Google Scholar 

  60. Fu XY, Xie PT, Lian YW, He LQ, Zhao W, Chang T, Qin SJ (2018) Temperature-responsive self-separation ionic liquid system of zwitterionic-type quaternary ammonium-KI for CO2 fixation. Chin J Catal 39:1854–1860. https://doi.org/10.1016/S1872-2067(18)63101-8

    Article  CAS  Google Scholar 

  61. Maity N, Barman S, Minenkov Y, Ould-Chikh S, Abou-Hamad E, Ma T, Qureshi ZS, Cavallo L, D’Elia V, Gates BC, Basset J (2018) A silica-supported monoalkylated tungsten dioxo complex catalyst for olefin metathesis. ACS Catal 8:2715–2729. https://doi.org/10.1021/acscatal.7b04304

    Article  CAS  Google Scholar 

  62. Hao S, Liu YC, Shang CN, Liang ZQ, Yu JH (2017) CO2 adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers. Polym Chem 8:1833–1839. https://doi.org/10.1039/c6py02091g

    Article  CAS  Google Scholar 

  63. Qu R, Ren ZJ, Li N, Zhang FF, Zhang ZY, Zhang HN (2020) Solvent-free cycloaddition of carbon dioxide and epichlorohydrin catalyzed by surface-attached imidazolum-type poly(ionic liquid) monolayers. J CO2 Util 38:168–176. https://doi.org/10.1016/j.jcou.2020.01.022

    Article  CAS  Google Scholar 

  64. Wang YP, Nie JQ, Lu CF, Wang FY, Ma C, Chen ZX, Yang GC (2020) Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates. Mircropor Mesopor Mater 292:109751. https://doi.org/10.1016/j.micromeso.2019.109751

    Article  CAS  Google Scholar 

  65. Zhang WL, Ma FP, Ma L, Zhou Y, Wang J (2020) Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas. ChemSusChem 13:341–350. https://doi.org/10.1002/cssc.201902952

    Article  CAS  PubMed  Google Scholar 

  66. Guo ZJ, Jiang QW, Shi YM, Li J, Yang XN, Hou W, Zhou Y, Wang J (2017) Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2 at ambient conditions: a combined experimental and theoretical study. ACS Catal 7:6770–6780. https://doi.org/10.1021/acscatal.7b02399

    Article  CAS  Google Scholar 

  67. Ravi S, Puthiaraj P, Ahn WS (2018) Hydroxylamine-anchored covalent aromatic polymer for CO2 adsorption and fixation into cyclic carbonates. ACS Sustain Chem Eng 6:9324–9332. https://doi.org/10.1021/acssuschemeng.8b01588

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province (226Z4304G), the Hebei Natural Science Foundation (B2023402022, E2021402017), the Science Foundation of Handan City (21422303245).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Chang or Zheng Zhu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1947 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Li, X., Zhang, J. et al. Carbon Sphere Anchored Hydroxylamino-Decorated Ionic Liquids for CO2 Fixation into Cyclic Carbonates at Mild Conditions. Catal Lett 154, 1611–1621 (2024). https://doi.org/10.1007/s10562-023-04443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04443-7

Keywords

Navigation