Skip to main content
Log in

Core–Shell Dispersed Polymeric Ionic Liquids as Efficient Heterogeneous Catalyst for CO2 Conversion into Cyclic Carbonates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Core–shell polyionic liquids were successfully constructed to reduce the amount of bulk ionic liquids and realize heterogeneous catalysis in the reaction of CO2 conversion into carbonate. The core–shell polyionic liquid structure is formed by one-step surface polymerization with cheap and readily available SiO2 as the carrier. By optimizing the ratio of ionic liquid monomer to SiO2, PIL@SiO2(1:1.5) of high activity and low ionic liquid dosage was successfully obtained, and only 40% of bulk ionic liquid dosage was used to achieve high activity of quasi-homogeneous phase (PO conversion 95.5%). Combined with the characterization and mechanism study, it was found that at an appropriate ratio (1:1.5), good mesoporous structure and a certain extent dispersion of polyionic liquid can make the active site better dispersed to facilitate the simultaneous activation of multiple molecules, which is the reason for the high activity. In addition, the core–shell structure also has good substrate suitability and recyclability stability. This study provides good ideas for the development of low-cost heterogeneous ionic liquid catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cheng H, Wang P, Luo J et al (2015) Poly(ionic liquid)-based nanocomposites and their performance in CO2 capture. Ind Eng Chem Res 54(12):3107–3115

    Article  CAS  Google Scholar 

  2. Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balaji K, Rabiei M (2022) Carbon dioxide pipeline route optimization for carbon capture, utilization, and storage: a case study for North-Central USA. Sustain Energy Technol Assess 51:101900

    Google Scholar 

  4. Godin J, Liu W, Ren S et al (2021) Advances in recovery and utilization of carbon dioxide: a brief review. J Environ Chem Eng 9(4):105644

    Article  CAS  Google Scholar 

  5. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12(9):1514

    Article  CAS  Google Scholar 

  6. Ji L, Luo Z, Zhang Y et al (2018) Imidazolium ionic liquids/organic bases: efficient intermolecular synergistic catalysts for the cycloaddition of CO2 and epoxides under atmospheric pressure. Mol Catal 446:124–130

    Article  CAS  Google Scholar 

  7. Sperandio C, Rodriguez J, Quintard A (2020) Organocatalytic carbon dioxide fixation to epoxides by perfluorinated 1,3,5-triols catalysts. Org Biomol Chem 18(14):2637–2640

    Article  CAS  PubMed  Google Scholar 

  8. Udayakumar S, Lee M-K, Shim H-L et al (2009) Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction: the effective conversion of carbon dioxide. Appl Catal A General 365(1):88–95

    Article  CAS  Google Scholar 

  9. Sun J, Yao X, Cheng W et al (2014) 1,3-Dimethylimidazolium-2-carboxylate: a zwitterionic salt for the efficient synthesis of vicinal diols from cyclic carbonates. Green Chem 16(6):3297

    Article  CAS  Google Scholar 

  10. Sun J, Wang J, Cheng W et al (2012) Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem 14(3):654

    Article  CAS  Google Scholar 

  11. Sun J, Cheng W, Yang Z et al (2014) Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem 16(6):3071

    Article  CAS  Google Scholar 

  12. Alrefaee SH (2021) Effect of alkyl chain length and halide ions on the corrosion inhibition potential of imidazolium and pyridinium based ionic liquids: computational studies. J Mol Liq 344:117848

    Article  CAS  Google Scholar 

  13. Durga G, Kalra P, Kumar Verma V et al (2021) Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids). J Mol Liq 335:116540

    Article  CAS  Google Scholar 

  14. Guo Y, Tang Y, He D et al (2021) Preparation and polymerization analysis of poly-(alkenyl-based di-ionic ionic liquid). J Mol Liq 349:118159

    Article  Google Scholar 

  15. Chen J, Wang H, Deng L et al (2021) Synthesis, characterization, and application of metal-free acidic ionic liquids as catalysts for oligomerization of isobutene. Fuel 299:120876

    Article  CAS  Google Scholar 

  16. Sun J, Han L, Cheng W et al (2011) Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions. Chemsuschem 4(4):502–507

    Article  CAS  PubMed  Google Scholar 

  17. Ying T, Tan X, Su Q et al (2019) Polymeric ionic liquids tailored by different chain groups for the efficient conversion of CO2 into cyclic carbonates. Green Chem 21(9):2352–2361

    Article  CAS  Google Scholar 

  18. Eftekhari A, Saito T (2017) Synthesis and properties of polymerized ionic liquids. Eur Polym J 90:245–272

    Article  CAS  Google Scholar 

  19. Dinc M, Esen C, Mizaikoff B (2019) Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. TrAC Trends Anal Chem 114:202–217

    Article  CAS  Google Scholar 

  20. Akala EO, Adesina SK (2018) Fabrication of polymeric core-shell nanostructures. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology, 1–49

  21. Natongchai W, Luque-Urrutia JA, Phungpanya C et al (2021) Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Org Chem Front 8(3):613–627

    Article  CAS  Google Scholar 

  22. Subramanian S, Park J, Byun J et al (2018) Highly efficient catalytic cyclic carbonate formation by pyridyl salicylimines. ACS Appl Mater Interfaces 10(11):9478–9484

    Article  CAS  PubMed  Google Scholar 

  23. Claver C, Yeamin MB, Reguero M et al (2020) Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates. Green Chem 22(22):7665–7706

    Article  CAS  Google Scholar 

  24. Guo L, Dou R, Wu Y et al (2019) From lignin waste to efficient catalyst: illuminating the impact of lignin structure on catalytic activity of cycloaddition reaction. ACS Sustain Chem Eng 7(19):16585–16594

    Article  CAS  Google Scholar 

  25. Jaroonwatana W, Theerathanagorn T, Theerasilp M et al (2021) Nanoparticles of aromatic biopolymers catalyze CO2 cycloaddition to epoxides under atmospheric conditions. Sustain Energy Fuels 5(21):5431–5444

    Article  CAS  Google Scholar 

  26. Yue Q, Zhang Y, Jiang Y et al (2017) Nanoengineering of core-shell magnetic mesoporous microspheres with tunable surface roughness. J Am Chem Soc 139(13):4954–4961

    Article  CAS  PubMed  Google Scholar 

  27. Yang W, Li H, Wu Q et al (2020) Functionalized core-shell polystyrene sphere-supported alkaline imidazolium ionic liquid: an efficient and recyclable catalyst for knoevenagel condensation. ACS Sustain Chem Eng 8(49):18126–18137

    Article  CAS  Google Scholar 

  28. Rusen E, Diacon A, Mocanu A et al (2018) “A real” emulsion polymerization using simple ATRP reaction in the presence of an oligo-initiator with a dual activity of emulsifier and initiator. Colloids Surf A 555:1–7

    Article  CAS  Google Scholar 

  29. Wang P, Zhou Y-N, Luo J-S et al (2014) Poly(ionic liquid)s-based nanocomposite polyelectrolytes with tunable ionic conductivity prepared via SI-ATRP. Polym Chem 5(3):882–891

    Article  CAS  Google Scholar 

  30. Robin C, Lorthioir C, Erman A et al (2022) Adsorption of poly(methacrylic acid) onto differently charged silica nanoparticles and its consequences on particles clustering. Colloids Surf A 638:128287

    Article  CAS  Google Scholar 

  31. Lang J-Y, Yang Y-S, Wan N, et al (2022) Preparation of boronate-modified larger mesoporous polymer microspheres with fumed silica nanoparticle and toluene as synergistic porogen for selective separation of sulfonamides. Microchem J. https://doi.org/10.2139/ssrn.3940903

  32. Cao J, Wang J, Wang X et al (2022) Preparation and characterization of modified amphiphilic nano-silica for enhanced oil recovery. Colloids Surf A 633:127864

    Article  CAS  Google Scholar 

  33. Zeeshan M, Nozari V, Yagci MB et al (2018) Core-shell type ionic liquid/metal organic framework composite: an exceptionally high CO2/CH4 selectivity. J Am Chem Soc 140(32):10113–10116

    Article  CAS  PubMed  Google Scholar 

  34. Ying T, Su Q, Shi Z et al (2019) Polymeric Ionic liquid grafted on silica for efficient conversion of CO2 into cyclic carbonates. Catal Lett 149(10):2647–2655

    Article  CAS  Google Scholar 

  35. Liu Y, Cheng W, Zhang Y et al (2017) Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO2 with epoxides. Green Chem 19(9):2184–2193

    Article  CAS  Google Scholar 

  36. Du Y-R, Ding G-R, Wang Y-F et al (2021) Construction of a PPIL@COF core–shell composite with enhanced catalytic activity for CO2 conversion [J]. Green Chem 23(6):2411–2419

    Article  CAS  Google Scholar 

  37. Su Q, Qi Y, Yao X et al (2018) Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates. Green Chem 20(14):3232–3241

    Article  CAS  Google Scholar 

  38. Su Q, Yao X, Cheng W et al (2017) Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO2 into cyclic carbonates. Green Chem 19(13):2957–2965

    Article  CAS  Google Scholar 

  39. Buettner CS, Cognigni A, Schröder C et al (2022) Surface-active ionic liquids: a review. J Mol Liq 347:118160

    Article  CAS  Google Scholar 

  40. Maity N, Barman S, Abou-Hamad E et al (2018) Clean chlorination of silica surfaces by a single-site substitution approach. Dalton Trans 47(12):4301–4306

    Article  CAS  PubMed  Google Scholar 

  41. Maity N, Barman S, Minenkov Y et al (2018) A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis [J]. ACS Catal 8(4):2715–2729

    Article  CAS  Google Scholar 

  42. Sodpiban O, Phungpanya C, Del-Gobbo S et al (2021) Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates. Chem Eng J 422:129930

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the National Natural Science Foundation of China (No. 22078329, 21908226, 22178356, 21890763, 22008242).“Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA 21030500, the Key-Area Research and Development Program of Guangdong Province (No.2020B0101370002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqi Ma or Weiguo Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 642 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Su, Q., Fu, M. et al. Core–Shell Dispersed Polymeric Ionic Liquids as Efficient Heterogeneous Catalyst for CO2 Conversion into Cyclic Carbonates. Catal Lett 153, 2429–2442 (2023). https://doi.org/10.1007/s10562-022-04103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04103-2

Keywords

Navigation