Skip to main content
Log in

Immobilization of Inulinase on Aminated Multiwalled Carbon Nanotubes by Glutaraldehyde Cross-Linking for the Production of Fructose

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present work, an attempt was made to enhance immobilization yield and operational stability of inulinase (Exo-II) from Penicillium oxalicum onto amino (+NH2) terminated multiwalled carbon nanotubes (MWCNTs) through glutaraldehyde (GA) cross-linking. A statistical study using response surface methodology (RSM) was employed to optimise inulinase immobilization onto 3-aminopropyl-triethoxysilane (APTES) and GA modified surfaces of MWCNTs. Under optimized conditions (APTES concentration 4%; sonication time 4 h; GA concentration 2%; GA activation time 75 min; enzyme load 27.5 IU and enzyme coupling time 2.75 h), inulinase activity and immobilization yield obtained were 73.9% and 84.9%, respectively. An increase in inulinase activity (1.22-fold) and immobilization yield (1.14-fold) was observed after modification of aminated MWCNTs by GA cross-linking. Developed immobilized biocatalyst shown excellent operational stability for 43 cycles for fructose production in a batch system. Increased immobilization yield and operational stability of the developed biocatalyst onto APTES-GA functionalized MWCNTs justifies it a good candidate for fructose production from inulin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh RS, Chauhan K, Pandey A, Larroche C (2018) Bioresour Technol 260:395–403

    Article  CAS  PubMed  Google Scholar 

  2. Singh RS, Singh T, Larroche C (2018) Bioresour Technol 273:641–653

    Article  CAS  PubMed  Google Scholar 

  3. Singh RS, Chauhan K, Singh RP (2017) In: Gahlawat SK, Salar RK, Siwach P, Duhan JS, Kumar S, Kaur P (eds) Plant biotechnology: recent advancements and developments. Springer Nature Singapore Pte Ltd., Singapore, pp 189–211

    Chapter  Google Scholar 

  4. Singh RS, Chauhan K, Kennedy JF (2017) Int J Biol Macromol 96:312–322

    Article  CAS  PubMed  Google Scholar 

  5. Singh RS, Chauhan K, Singh RP (2018) In: Sharma HK, Panesar PS (eds) Technologies in food processing. Apple Academic Press, Oakville, pp 81–104

    Google Scholar 

  6. Singh RS, Chauhan K (2018) Curr Biotechnol 7:242–260

    Article  CAS  Google Scholar 

  7. Singh RS, Singh RP (2010) Food Technol Biotechnol 48:435–450

    CAS  Google Scholar 

  8. Singh RS, Singh RP, Kennedy JF (2016) Int J Biol Macromol 85:565–572

    Article  CAS  PubMed  Google Scholar 

  9. Missau J, Scheid AJ, Foletto EL, Jahn SL, Mazutti MA, Kuhn RC (2014) Sustain Chem Process 2:13

    Article  CAS  Google Scholar 

  10. Singh RS, Singh RP, Kennedy JF (2017) Int J Biol Macromole 95:87–93

    Article  CAS  Google Scholar 

  11. Singh RS, Dhaliwal R, Puri M (2007) J Ind Microbiol Biotechnol 34:649–655

    Article  CAS  PubMed  Google Scholar 

  12. Garuba EO, Onilude AA (2018) J Genet Eng Biotechnol 16:341–346

    Article  PubMed  PubMed Central  Google Scholar 

  13. Díaz EG, Catana R, Ferreira BS, Luque S, Fernandes P, Cabral MS (2006) J Memb Sci 273:152–158

    Article  CAS  Google Scholar 

  14. Paula FC, Cazetta ML, Monti R, Contiero J (2007) Curr Trends Biotechnol Pharm 1:34–40

    CAS  Google Scholar 

  15. Gajanan K, Tijare SN (2018) Mater Today: Proceed 5:1093–1096

    CAS  Google Scholar 

  16. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego

    Google Scholar 

  17. Singh RS, Chauhan K, Kennedy JF (2019) Int J Biol Macromol 125:41–52

    Article  CAS  PubMed  Google Scholar 

  18. Singh RS, Chauhan K (2017) Biocatal Agric Biotechnol 9:1–10

    Article  Google Scholar 

  19. Singh RS, Chauhan K (2018) 3 Bioetch 8:38

    Google Scholar 

  20. Singh RS, Chauhan K, Pandey A, Larroche C, Kennedy JF (2018) Int J Biol Macromol 118:1974–1983

    Article  CAS  PubMed  Google Scholar 

  21. Miller GL (1959) Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  22. Singh RS, Dhaliwal R, Puri M (2007) J Microbiol Biotechnol 17:733–738

    CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr A, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  24. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleria LA (2008) Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  25. Singh RS, Saini GK (2013) J Scient Ind Res 72:603–610

    CAS  Google Scholar 

  26. Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandes-Lafuente R (2014) RSC Adv 4:1583–1600

    Article  CAS  Google Scholar 

  27. Stanley WL, Watters GG, Kelly SH, Chan BG, Garibaldi JA, Schade JE (1976) Biotechnol Bioeng 18:439–443

    Article  CAS  Google Scholar 

  28. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) Biotechnol Biotech Equip 29:205–220

    Article  CAS  Google Scholar 

  29. Awad GEA, Wehaidy HR, El Aty AAA, Hassan ME (2017) Colloid Polym Sci 295:495–506

    Article  CAS  Google Scholar 

  30. Yewale T, Singhal RS, Vaidya AA (2013) Biocatal Agric Biotechnol 2:96–101

    Article  Google Scholar 

  31. Karimi M, Habibi-Rezaei M, Rezaei K, Moosavi-Movahedi AA, Kokini J (2016) Biocatal Agric Biotechnol 7:174–180

    Article  Google Scholar 

  32. Torabizadeh H, Mahmoudi A (2018) Biotechnol Rep 17:97–103

    Article  Google Scholar 

  33. Hang H, Wang C, Cheng Y, Li N, Song L (2017) Appl Biochem Biotechnol 184:453–470

    Article  CAS  PubMed  Google Scholar 

  34. Abel-Naby AM (1993) Appl Biochem Biotechnol 38:69–81

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, Department of Biotechnology, Punjabi University, Patiala for availing necessary laboratory facilities to execute the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sarup Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.S., Chauhan, K. Immobilization of Inulinase on Aminated Multiwalled Carbon Nanotubes by Glutaraldehyde Cross-Linking for the Production of Fructose. Catal Lett 149, 2718–2727 (2019). https://doi.org/10.1007/s10562-019-02743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02743-5

Keywords

Navigation