Skip to main content

Characterization of Enzyme Immobilization on Novel Supports—Multi-walled Carbon Nanotube and Alginate

  • Chapter
  • First Online:
Advances in Nanotechnology and Its Applications

Abstract

Enzymes are preferred over chemical catalysts in a myriad of applications owing to their high specificity, selectivity and moderate operating conditions. Enzymes in the soluble state are susceptible to instability and difficult in separation. Immobilization of enzyme onto a support increases its physical and thermal stability, reusability and recovery from the reaction broth. Different support materials such as polymers, hydrogels, nanoparticles, nanofibers and nano-scaffolds are being used for enzyme immobilization. Carbon-based nanomaterials have gained high popularity among different support materials. Here, we present the research findings on the immobilization of β-glucosidase onto two novel support materials, i.e., glutaraldehyde-activated multi-walled carbon nanotubes (MWCNTs) and Ca-alginate beads. The relative merits of the two supports are compared in terms of the performance of the enzyme in each case. β-Glucosidase immobilized on glutaraldehyde-modified MWCNTs exhibited higher residual activity and stability  compared to the enzyme encapsulated in Ca-alginate beads. Kinetic study shows a higher enzyme affinity for the substrate for enzyme immobilized onto MWCNT support compared to Ca-alginate. The overall results demonstrate that despite a general decrease in the enzyme activity due to immobilization, there is greater retention of activity of the immobilized enzyme upon multiple cycles of hydrolysis. This study provides distinct economic advantage of employing nanoparticles as support for enzyme immobilization for large-scale industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.E. Workman, D.F. Day, Purification and properties of β-glucosidase from Aspergillus Terreus. Appl. Environ. Microbiol. 44(6), 1289–1295 (1982)

    Article  Google Scholar 

  2. A. Sørensen, P.S. Lübeck, M. Lübeck, P.J. Teller, B.K. Ahring, β-Glucosidases from a new Aspergillus Species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. Can. J. Microbiol. 57(8), 638–650 (2011)

    Article  Google Scholar 

  3. A. Martino, P.G. Pifferi, G. Spagna, The separation of pectinlyase from β-glucosidase in a commercial preparation. J. Chem. Technol. Biotechnol. 61(3), 255–260 (2013)

    Article  Google Scholar 

  4. M.C. Moscatelli, β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches. Ecol. Ind. 13(1), 322–327 (2012)

    Article  Google Scholar 

  5. A. Bai, X. Zhao, Y. Jin, G. Yang, Y. Feng, A novel thermophilic β-glucosidase from Caldicellulosiruptor Bescii: Characterization and its synergistic catalysis with other cellulases. J. Mol. Catal. B Enzym. 85–86, 248–256 (2013). https://doi.org/10.1016/j.molcatb.2012.09.016

    Article  Google Scholar 

  6. Y. Lin, S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69, 627–642 (2006)

    Article  Google Scholar 

  7. A. Celik, A. Dincer, T. Aydemir, Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTs) and their application on tea extracts for aroma enhancement. Int. J. Biol. Macromol. 89, 406–414 (2016)

    Article  Google Scholar 

  8. Q. Wang, L. Zhou, Y. Jiang, J. Gao, Improved stability of the carbon nanotubes-enzyme bioconjugates by biomimetic silicification. Enzyme Microbial Technol. 49(1), 11–16 (2011)

    Article  Google Scholar 

  9. R.E. Abraham, M. Puri, Nano-immobilized cellulases for biomass processing with application in biofuel production, in Methods in Enzymology (Elsevier Inc., 2019). https://doi.org/10.1016/bs.mie.2019.09.006

  10. R. Ahmad, S.K. Khare, Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Biores. Technol. 252, 72–75 (2018). https://doi.org/10.1016/j.biortech.2017.12.082

    Article  Google Scholar 

  11. M. Khan, Q. Husain, Multiwalled carbon nanotubes bound beta-galactosidase: It’s activity, stability and reusability. Methods Enzymol. (2019). https://doi.org/10.1016/bs.mie.2019.10.018

    Article  Google Scholar 

  12. N. Ortega, M.D. Busto, M. Perez-Mateos, Optimization of β-glucosidase entrapment in alginate and polysaccharide. Biosource Technol. 64, 105–111 (1998)

    Article  Google Scholar 

  13. A. Anwar, S. Ali Ul Qader, S. Iqbal, A. Riaz, A. Azhar, Calcium alginate: a support material for immobilization of proteases from newly isolated strain of Bacillus Subtilis KIBGE-HAS. World Appl. Sci. J. 7(10), 1281–1286 (2009)

    Google Scholar 

  14. D.B. Magalhaes, M.H. Miguez da Rocha-Leao, Immobilization of β-glucosidase aggregates in calcium alginate. Biomass Bioenerg. 1(4), 213–216 (1991)

    Article  Google Scholar 

  15. M.D. Busto, N. Ortega, M. Perez-Mateos, Studies on microbial β-d-glucosidase immobilized in alginate gel beads. Process Biochem. 30(5), 421–426 (1995)

    Google Scholar 

  16. S. Erzheng, X. Tao, G. Liping, D. Qianying, Z. Zhengzhu, Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod. Process. 88, 83–89 (2010)

    Article  Google Scholar 

  17. P. Zheng, J. Wang, C. Lu, Y. Xu, Z. Sun, Immobilized β-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose. Process Biochem. 48(4), 683–687 (2013)

    Article  Google Scholar 

  18. I.S. Tan, K.T. Lee, Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Biores. Technol. 184, 386–394 (2015). https://doi.org/10.1016/j.biortech.2014.10.146

    Article  Google Scholar 

  19. J. Zhang, D. Wang, J. Pan, J. Wang, H. Zhao, Q. Li, X. Zhou, Efficient resveratrol production by immobilized β-glucosidase on cross-linked chitosan microsphere modified by L-lysine. J. Mol. Catal. B Enzym. 104, 29–34 (2014)

    Article  Google Scholar 

  20. T.M. Silva, B.C. Pessela, J.C.R. Silva, M.S. Lima, J.A. Jorge, J.M. Guisan, M.L.T.M. Polizeli, Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. J. Mol. Catal. B Enzym. 104, 95–100 (2014). https://doi.org/10.1016/j.molcatb.2014.02.018

    Article  Google Scholar 

  21. L.T. Nguyen, Y.S. Lau, K.-L. Yang, Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Colloids Surf. B 145, 862–869 (2016)

    Article  Google Scholar 

  22. Z. Ding, X. Zheng, S. Li, X. Cao, Immobilization of cellulase onto a recyclable thermo-responsive polymer as bioconjugate. J. Mol. Catal. B Enzym. 128, 39–45 (2016). https://doi.org/10.1016/j.molcatb.2016.03.007

    Article  Google Scholar 

  23. W. Feng, Enzyme immobilized on carbon nanotubes. Biotechnol. Adv. 29, 889–895 (2011)

    Article  Google Scholar 

  24. M.L. Verma, M. Naebe, C.J. Barrow, M. Puri, Enzyme immobilization on amino-functionalized multi-walled carbon nanotubes: structural and biocatalytic characterization. PLoS One 1371–1382 (2013a)

    Google Scholar 

  25. M.L. Verma, R. Chaudhary, T. Tsuzuki, C.J. Barrow, M. Puri, Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Biores. Technol. 135, 2–6 (2013)

    Article  Google Scholar 

  26. S.A. Ansari, Q. Husain, Potential application of enzymes immobilized on/in nano materials: a review. Biotechnol. Adv. 30, 512–523 (2012)

    Article  Google Scholar 

  27. M. Patila, N. Chalmpes, E. Dounousi, H. Stamatis, D. Gournis, Use of functionalized carbon nanotubes for the development of robust nanobiocatalysts. Methods Enzymol. (2019). https://doi.org/10.1016/bs.mie.2019.10.015

    Article  Google Scholar 

  28. P. Kumar, B. Ryan, G.T.M. Henehan, β-Glucosidase from Streptomyces griseus: nanoparticle immobilization and alkyl glucoside synthesis. Protein Expr. Purif. 132, 164–170 (2017)

    Article  Google Scholar 

  29. K. Khoshnevisan, F. Vakhshiteh, M. Barkhi, H. Baharifar, E. Poor-Akbar, N. Zari, A.-K. Bordbar, Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. Mol. Catal. 442, 66–73 (2017). https://doi.org/10.1016/j.mcat.2017.09.006

    Article  Google Scholar 

  30. O.M. Darwesh, S.S. Ali, I.A. Matter, T. Elsamahy, Y.A. Mahmoud, Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods Enzymol. (2019). https://doi.org/10.1016/bs.mie.2019.11.006. (Elsevier)

    Article  Google Scholar 

  31. K. Selvam, M. Govarthanan, D. Senbagam, S. Kamala-Kannan, B. Senthilkumar, T. Selvankumar, Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin. J. Catal. 37(11), 1891–1898 (2016). https://doi.org/10.1016/s1872-2067(16)62487-7

    Article  Google Scholar 

  32. T.C. Coutinho, M.J. Rojas, P.W. Tardioli, E.C. Paris, C.S. Farinas, Nanoimmobilization of β-glucosidase onto hydroxyapatite. Int. J. Biol. Macromol. 119, 1042–1051 (2018)

    Article  Google Scholar 

  33. N.S. Valentina, β-Galactosidase entrapment in silica gel matrices for a more effective treatment of lactose intolerance. J. Mol. Catal. B Enzym. 71, 10–15 (2011)

    Article  Google Scholar 

  34. S.A. Ansari, R. Sattar, S. Chibber, M.J. Khan, Enhanced stability of kluyveromyces lactis beta-galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. J. Mol. Catal. B Enzym. 97, 258–263 (2013)

    Article  Google Scholar 

  35. I. Migneault, C. Dartiguenave, M.J. Bertrand, K.C. Waldron, Glutaraldehyde behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37, 790–802 (2004)

    Article  Google Scholar 

  36. L. Mahmood, Comparative study of the effectiveness of immobilized β-glucosidase enzyme on CNT-nanoparticles and Ca-alginate beads. Undergraduate Dissertation, Biotechnology Engineering Department, International Islamic University Malaysia, Kuala Lumpur, 2014

    Google Scholar 

  37. C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microbial Technol. 40, 1451–1463 (2007)

    Article  Google Scholar 

  38. Y.R. Jung, H.Y. Shin, Y.S. Song, S.B. Kim, S.W. Kim, Enhancement of immobilized enzyme activity by pretreatment of β-glucosidase with cellobiose and glucose. J. Ind. Eng. Chem. 18, 702–706 (2012)

    Article  Google Scholar 

  39. A.T. Jameel, Y. Faridah, S. Johana, Performance of β-glucosidase immobilized on calcium alginate beads, in Proceedings of the International Conference on Biotechnology Engineering, ICBioE 2013 (International Islamic University Malaysia, Kuala Lumpur, July 2013), pp. 655–661

    Google Scholar 

  40. P.M. Doran, Bioprocess Engineering Principles, 2nd edn. (Academic Press, Elsevier Ltd., Oxford UK, 2013), pp. 661–623

    Google Scholar 

  41. N.G. Sahoo, H. Bao, Y. Pan, M. Pal, M. Kakran, H.K.F. Cheng, L. Li, L.P. Tan, Functionalized carbon nanomaterials as nanocarriers for loading and delivery of poorly water soluble anticancer drug: A comparative study. Chem. Commun. 47, 5235–5237 (2011). https://doi.org/10.1039/c1cc00075f

    Article  Google Scholar 

  42. L.Z.W. Qi, Improved stability of the carbon nanotubes-bioconjugates by biomimetic silification. Enzyme Microbial Technol. 49, 11–16 (2011)

    Article  Google Scholar 

  43. N.M. Mubarak, J.R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J. Mol. Catal. B Enzym. 107, 124–131 (2014)

    Article  Google Scholar 

  44. C.-T. Tsai, A.S. Meyer, Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules 19(12), 19390–19406 (2014)

    Article  Google Scholar 

  45. Hyper 32 Software (University of Liverpool, 2012)

    Google Scholar 

  46. S.A. Qader, Characterization of dextransucrase immobilized on calcium alginate beads from leuconostoc mesenteroides PCSIR-4. Ital. J. Biochem. 56, 158–162 (2007)

    Google Scholar 

  47. A.T. Jameel, K.Y. Maalim, F. Yusof, Relative characterization of the immobilized beta-glucosidase on Ca-alginate and acid functionalized-multiwalled carbon nanotubes. Jurnal Teknologi (Sci. Eng. ) 81(3), 1–10 (2019). https://doi.org/10.11113/jt.v81.13314

Download references

Acknowledgements

The research endowment fund grant No. EDW B13-036-0921 by the International Islamic University Malaysia is gratefully acknowledged. The authors thank Elsevier Inc. for granting permission to reproduce figure from the book Methods in Enzymology (Elsevier Inc.) as Fig. 1 in the present manuscript.

Conflict of Interest The authors of this chapter have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Tariq Jameel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jameel, A.T., Mahmud, L., Yusof, F. (2020). Characterization of Enzyme Immobilization on Novel Supports—Multi-walled Carbon Nanotube and Alginate. In: Jameel, A., Yaser, A. (eds) Advances in Nanotechnology and Its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-4742-3_1

Download citation

Publish with us

Policies and ethics