Skip to main content

Advertisement

Log in

Synthesis of Cu–Co Catalysts for Methanol Decomposition to Hydrogen Production via Deposition–Precipitation with Urea Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of CuxCoy catalysts were successfully synthesized by deposition–precipitation with urea method and their catalytic performance was investigated for methanol decomposition to hydrogen. These as-prepared samples were characterized by ICP-OES, XRD, SEM, BET, H2-TPR and XPS. The characterization results indicate that the bimetallic catalysts exhibit better dispersion and reducibility as compared with the monometallic catalysts, and the strong interaction between copper and cobalt can promote the formation of Cu+. Among the fabricated materials, the Cu0.5Co0.5 presents the best catalytic activity and H2 selectivity. Moreover, its catalytic performance is higher than the commercial catalyst at the same test conditions.

Graphical Abstract

The catalytic performance of bimetallic CuxCoy catalytic is better than that of monometallic catalysts. Meanwhile, the optimized catalyst prepared exhibits excellent catalytic activity and selectivity compared with the commercial catalysts at the same reaction conditions, which is due to the coexist of Cu+ and Cu2+ after reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964–967

    Article  CAS  PubMed  Google Scholar 

  2. Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952–3991

    Article  CAS  PubMed  Google Scholar 

  3. Yurderi M, Bulut A, Ertas İE, Zahmakiran M, Kaya M (2015) Appl Catal B 165:169–175

    Article  CAS  Google Scholar 

  4. Calcerrada AB, de la Osa AR, Llanos J, Dorado F, de Lucas-Consuegra A (2018) Appl Catal B 231:310–316

    Article  CAS  Google Scholar 

  5. Chu W, Zhang XW, Wang XD, Ci ZM, Zhang T (2007) Abstr Pap Am Chem S 234

  6. Kim W, Mohaideen KK, Seo DJ, Yoon WL (2017) Int J Hydrogen Energy 42:2081–2087

    Article  CAS  Google Scholar 

  7. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Appl Catal A 179:21–29

    Article  CAS  Google Scholar 

  8. Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) J Catal 194:373–384

    Article  CAS  Google Scholar 

  9. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:43–55

    CAS  Google Scholar 

  10. Zhang XW, Chu W, Wang XD, Yang WS, Sheng SS, Zhang T (2006) Chin J Catal 27:863–867

    CAS  Google Scholar 

  11. Tsoncheva T, Genova I, Dimitrov M, Sarcadi-Priboczki E, Venezia AM, Kovacheva D, Scotti N, dal Santo V (2015) Appl Catal B 165:599–610

    Article  CAS  Google Scholar 

  12. Huang TJ, Wang SW (1986) Appl Catal 24:287–297

    Article  CAS  Google Scholar 

  13. Zuo ZJ, Wang L, Han PD, Huang W (2014) Int J Hydrogen Energy 39:1664–1679

    Article  CAS  Google Scholar 

  14. Chun DH, Xu Y, Demura M, Kishida K, Oh MH, Hirano T, Wee DM (2006) Catal Lett 106:71–75

    Article  CAS  Google Scholar 

  15. Deng J, Chu W, Wang B, Yang W, Zhao XS (2016) Catal Sci Technol 6:851–862

    Article  CAS  Google Scholar 

  16. Lu JC, Li XF, He SF, Han CY, Wan GP, Lei YQ, Chen R, Liu P, Chen KZ, Zhang L, Luo YM (2017) Int J Hydrogen Energy 42:3647–3657

    Article  CAS  Google Scholar 

  17. Yao DD, Yang HP, Chen HP, Williams PT (2018) Appl Catal B 227:477–487

    Article  CAS  Google Scholar 

  18. Gao J, Jiang Q, Liu YF, Liu W, Chu W, Su DS (2018) Nanoscale 10:14207–14219

    Article  CAS  PubMed  Google Scholar 

  19. Hokenek S, Kuhn JN (2012) ACS Catal 2:1013–1019

    Article  CAS  Google Scholar 

  20. Chen WH, Guo YZ (2018) Fuel 222:599–609

    Article  CAS  Google Scholar 

  21. Cheng WH, Shiau CY, Liu TH, Tung HL, Chen HH, Lu JF, Hsu CC (1998) Appl Catal B 18:63–70

    Article  CAS  Google Scholar 

  22. Agrell J, Boutonnet M, Fierro JLG (2003) Appl Catal A 253:213–223

    Article  CAS  Google Scholar 

  23. Ajamein H, Haghighi M, Shokrani R, Abdollahifar M (2016) J Mol Catal A 421:222–234

    Article  CAS  Google Scholar 

  24. Wu Q, Duchstein LDL, Chiarello GL, Christensen JM, Damsgaard CD, Elkjaer CF, Wagner JB, Temel B, Grunwaldt J-D, Jensen AD (2014) ChemCatChem 6:301–310

    Article  CAS  Google Scholar 

  25. Ryashentseva MA, Egorova EV, Trusov AI, Antonyuk SN (2002) Russ Chem B 51:1698–1701

    Article  CAS  Google Scholar 

  26. Cesar DV, Perez CA, Salim VMM, Schmal M (1999) Appl Catal A 176:205–212

    Article  CAS  Google Scholar 

  27. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Maniecki TP (2014) Appl Catal A 479:26–34

    Article  CAS  Google Scholar 

  28. Tsoncheva T, Gallo A, Scotti N, Dimitrov M, Delaigle R, Gaigneaux EM, Kovacheva D, Dal Santo V, Ravasio N (2012) Appl Catal A 417–418:209–219

    Article  CAS  Google Scholar 

  29. Tsoncheva T, Genova I, Stoycheva I, Spassova I, Ivanova R, Tsyntsarski B, Issa G, Kovacheva D, Petrov N (2015) J Porous Mater 22:1127–1136

    Article  CAS  Google Scholar 

  30. Velinov N, Koleva K, Tsoncheva T, Paneva D, Manova E, Tenchev K, Kunev B, Genova I, Mitov I (2013) Cent Eur J Chem 12:250–259

    Article  CAS  Google Scholar 

  31. Marbán G, López A, López I, Valdés-Solís T (2010) Appl Catal B 99:257–264

    Article  CAS  Google Scholar 

  32. Pérez-Hernández R, Mondragón Galicia G, Mendoza Anaya D, Palacios J, Angeles-Chavez C, Arenas-Alatorre J (2008) Int J Hydrogen Energy 33:4569–4576

    Article  CAS  Google Scholar 

  33. Lin Y-K, Su Y-H, Huang Y-H, Hsu C-J, Hsu Y-K, Lin Y-G, Huang K-H, Chen S-Y, Chen K-H, Chen L-C (2009) J Mater Chem 19:9186

    Article  CAS  Google Scholar 

  34. Jing J, Li L, Chu W, Wei Y, Jiang C (2018) Int J Hydrogen Energy 43:12059–12068

    Article  CAS  Google Scholar 

  35. Lu H, Jiang CF, Ding ZW, Wang W, Chu W, Feng YY (2016) J Energy Chem 25:387–392

    Article  Google Scholar 

  36. Li L, Jiang RY, Chu W, Cang H, Chen HW, Yan JL (2017) Catal Sci Technol 7:1363–1371

    Article  CAS  Google Scholar 

  37. Wang J, Chernavskii PA, Khodakov AY, Wang Y (2012) J Catal 286:51–61

    Article  CAS  Google Scholar 

  38. Xue L, Zhang C, He H, Teraoka Y (2007) Appl Catal B 75:167–174

    Article  CAS  Google Scholar 

  39. Borg O, Eri S, Blekkan E, Storsater S, Wigum H, Rytter E, Holmen A (2007) J Catal 248:89–100

    Article  CAS  Google Scholar 

  40. Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Jancalkova M (1991) Appl Catal 73:65–82

    Article  CAS  Google Scholar 

  41. Wu J, Gao G, Sun P, Long XD, Li FW (2017) ACS Catal 7:7890–7901

    Article  CAS  Google Scholar 

  42. Deng SY, Chu W, Xu HY, Shi LM, Huang LH (2008) J Nat Gas Chem 17:369–373

    Article  CAS  Google Scholar 

  43. Xu H, Chu W, Shi L, Zhang H, Si-yu D (2009) J Fuel Chem Technol 37:212–216

    Article  Google Scholar 

  44. Shi LM, Chu W, Deng SY, Xu HY (2008) J Nat Gas Chem 17:397–402

    Article  CAS  Google Scholar 

  45. Dong-Ge T, Jing-Yan H, Wei C, Tao Z, Xiao-Yang J (2008) Mater Lett 62:2746–2749

    Article  CAS  Google Scholar 

  46. Xiang YZ, Barbosa R, Kruse N (2014) ACS Catal 4:2792–2800

    Article  CAS  Google Scholar 

  47. Anton J, Nebel J, Song HQ, Froese C, Weide P, Ruland H, Muhler M, Kaluza S (2015) Appl Catal A 505:326–333

    Article  CAS  Google Scholar 

  48. Xiang Y, Barbosa R, Kruse N (2014) ACS Catal 4:2792–2800

    Article  CAS  Google Scholar 

  49. Fan XH, Li LM, Jing FL, Li J, Chu W (2018) Fuel 225:588–595

    Article  CAS  Google Scholar 

  50. Sharma PK, Saxena N, Bhatt A, Rajagopal C, Roy PK (2013) Catal Sci Technol 3:1017–1026

    Article  CAS  Google Scholar 

  51. Albadi J, Alihosseinzadeh A, Jalali M, Shahrezaei M, Mansournezhad A (2017) Mol Catal 440:133–139

    Article  CAS  Google Scholar 

  52. Tsyntsarski B, Stoycheva I, Tsoncheva T, Genova I, Dimitrov M, Petrova B, Paneva D, Cherkezova-Zheleva Z, Budinova T, Kolev H, Gomis-Berenguer A, Ania CO, Mitov I, Petrov N (2015) Fuel Process Technol 137:139–147

    Article  CAS  Google Scholar 

  53. Genova I, Dimitrov BT,M, Paneva D, Kovacheva D, Budinova T, Ivanova R, Mitov I, Tsoncheva NP,T (2014) Bulg Chem Commun 46:134–140

    Google Scholar 

  54. Lin SD, Hsiao TC, Chen LC (2009) Appl Catal A 360:226–231

    Article  CAS  Google Scholar 

  55. Goodarznia S, Smith KJ (2010) J Mol Catal A 320:1–13

    Article  CAS  Google Scholar 

  56. Yang HH, Chen YY, Cui XJ, Wang GF, Cen YL, Deng TS, Yan WJ, Gao J, Zhu SH, Olsbye U, Wang JG, Fan WB (2018) Angew Chem Int Ed 57:1836–1840

    Article  CAS  Google Scholar 

  57. Nickolov R, Tsoncheva T, Mehandjiev D (2002) Fuel 81:203–209

    Article  CAS  Google Scholar 

  58. Velinov N, Koleva K, Tsoncheva T, Manova E, Paneva D, Tenchev K, Kunev B, Mitov I (2013) Catal Commun 32:41–46

    Article  CAS  Google Scholar 

  59. Tsoncheva T, Gallo A, Spassova I, Dimitrov M, Genova I, Marelli M, Khristova M, Atanasova G, Kovacheva D, Dal Santo V (2013) Appl Catal A 464–465:243–252

    Article  CAS  Google Scholar 

  60. Mizsey P, Newson E, Truong TB, Hottinger P (2001) Appl Catal A 213:233–237

    Article  CAS  Google Scholar 

  61. Tawarah KM, Hansen RS (1984) J Catal 87:305–318

    Article  CAS  Google Scholar 

  62. Dicosimo JI, Apesteguia CR (1994) J Mol Catal 91:369–386

    Article  CAS  Google Scholar 

  63. Choudhury B, Choudhury A (2012) J Lumin 132:178–184

    Article  CAS  Google Scholar 

  64. Baneshi J, Haghighi M, Jodeiri N, Abdollahifar M, Ajamein H (2014) Energy Convers Manage 87:928–937

    Article  CAS  Google Scholar 

  65. Cheng WH (1995) Appl Catal A 130:13–30

    Article  CAS  Google Scholar 

  66. Xi JY, Wang WP, Lu GX (2002) Acta Chim Sin 60:419–426

    CAS  Google Scholar 

  67. Xi JY, Wang ZF, Lu GX (2002) Appl Catal A 225:77–86

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21476145) and Sichuan Provincial Science and Technology Project (No. 2018GZ 0313). The authors thank Shuxiong Sun, Jingsi Yang and Teng Wang for their constant encouragements and discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengfa Jiang or Wei Chu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2614 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Li, S., Jing, J. et al. Synthesis of Cu–Co Catalysts for Methanol Decomposition to Hydrogen Production via Deposition–Precipitation with Urea Method. Catal Lett 149, 2671–2682 (2019). https://doi.org/10.1007/s10562-019-02731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02731-9

Keywords

Navigation