Skip to main content
Log in

Modified Cu–ZnO Catalysts Supported on the Mixture of ZnO and Zn–Al Oxide for Methanol Production via Hydrogenation of CO and CO2 Gas Mixture

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cu-based catalysts were created using a two-step co-precipitation method, which can produce methanol from synthesis gases (H2 and CO) that also contain CO2. The catalysts were manufactured by a two-step co-precipitation method and compared with catalysts manufactured by a one-step co-precipitation method. The supports with Zn/Al = 1 (10ZA) and Zn/Al = 2 (20ZA) showed higher ZnAl2O4 ratios than the other catalysts, and the catalysts using these supports showed a similar trend to the ZnAl2O4 ratio. Cu–ZnO/mixture ZnO and ZnAl2O4 catalysts with more ZnAl2O4 (C10Z/20ZA and C20Z/10ZA) showed lower carbon and CO conversion losses and lower sintering of Cu (200) particles at the reaction temperatures (250, 300, and 350 °C) than the Cu–ZnO-ZnAl2O4 (C30ZA) catalyst. Cu–ZnO/mixture ZnO and ZnAl2O4 using support with Zn/Al = 2 (C10Z/20ZA) achieved dispersion of Cu (44.2%) and a methanol yield (409.0 gMeOH/kgcat./h) at a reaction temperature of 250 °C, GHSV of 4,444 h−1, and 40 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Av:

Avogadro’s number

D :

Dispersion

D*:

True dispersion

DI:

Deionized water

FID:

Flame ionization detector

MWCu :

Atomic weight of copper

N Cu :

Number of surface copper atoms in the unit surface area

S Cu :

Copper metal surface area per unit weight of the catalyst

S p :

Carbon selectivity

TCD:

Thermal conductivity detector

wtCu%:

Copper content of the catalyst

X i :

Carbon conversion

References

  1. G. Bozzano, F. Manenti, Prog. Energy Combust. Sci. 56, 71 (2016)

    Google Scholar 

  2. A.R. Richard, M. Fan, Fuel 222, 513 (2018)

    CAS  Google Scholar 

  3. M. Behrens, Angew. Chem. Int. Ed. 55, 14906 (2016)

    CAS  Google Scholar 

  4. S.A. Kondrat, P.J. Smith, L. Lu, J.K. Bartley, S.H. Taylor, M.S. Spencer, G.J. Kelly, C.W. Park, C.J. Kiely, G.J. Hutchings, Catal. Today 317, 12 (2018)

    CAS  Google Scholar 

  5. Y.M. Liu, J.T. Liu, S.Z. Liu, J. Li, Z.H. Gao, Z.J. Zuo, W. Huang, J. CO2 Util. 20, 59 (2017)

    CAS  Google Scholar 

  6. M. Bowker, ChemCatChem 11, 4238 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Wang, L. Yang, Y. Zhang, W. Ding, S. Chen, W. Fang, Y. Yang, Fuel Process Techonol. 91, 723 (2010)

    CAS  Google Scholar 

  8. H. Jung, D.-R. Yang, O.-S. Joo, K.-D. Jung, Bull. Korean Chem. Soc. 31, 1241 (2010)

    CAS  Google Scholar 

  9. X.-M. Liu, G. Lu, Z.-F. Yan, J. Beltramini, Ind. Eng. Chem. Res. 42, 6518 (2003)

    CAS  Google Scholar 

  10. J. Nakamura, T. Uchijima, Y. Kanai, T. Fujitani, Catal. Today 28, 223 (1996)

    CAS  Google Scholar 

  11. T. Fujitani, J. Nakamura, Catal. Lett. 56, 119 (1998)

    CAS  Google Scholar 

  12. J. Bart, R. Sneeden, Catal. Today 2, 1 (1987)

    CAS  Google Scholar 

  13. D. Sheldon, Johns. Matthey Technol. Rev. 61, 172 (2017)

    CAS  Google Scholar 

  14. S. Ren, W.R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer, S. Li, M. Yu, X. He, T.A. White, X. Liang, Fuel 239, 1125 (2019)

    CAS  Google Scholar 

  15. M.N. Barroso, M.F. Gomez, J.A. Gamboa, L.A. Arrúa, M.C. Abello, J. Phys. Chem. Solids 67, 1583 (2006)

    CAS  Google Scholar 

  16. X. Zhang, G. Zhang, W. Liu, F. Yuan, J. Wang, J. Zhu, X. Jiang, A. Zhang, F. Ding, C. Song, Appl. Catal. B 284, 119700 (2021)

    CAS  Google Scholar 

  17. H.-T. Song, A. Fazeli, H.D. Kim, A.A. Eslami, Y.S. Noh, N.G. Saeidabad, D.J. Moon, Fuel 283, 118987 (2021)

    CAS  Google Scholar 

  18. P. Mierczynski, T.P. Maniecki, K. Chalupka, W. Maniukiewicz, W.K. Jozwiak, Catal. Today 176, 21 (2011)

    CAS  Google Scholar 

  19. L. Song, H. Wang, S. Wang, Z. Qu, Appl. Catal. B Environ. 322, 122137 (2023)

    CAS  Google Scholar 

  20. S. Wang, L. Song, Z. Qu, Chem. Eng. J. 8, 144008 (2023)

    Google Scholar 

  21. S. Radha, J. Mani, R. Rajkumar, M. Arivanandhan, R. Jayavel, G. Anbalagan, Mater. Res. Express 10, 025501 (2023)

    Google Scholar 

  22. A. Kiennemann, H. Idriss, J. Hindermann, J. Lavalley, A. Vallet, P. Chaumette, P. Courty, Appl. Catal. 59, 165 (1990)

    CAS  Google Scholar 

  23. W.S. Kim, D.R. Yang, D.J. Moon, B.S. Ahn, Chem. Eng. Res. Des. 92, 931 (2014)

    CAS  Google Scholar 

  24. H. Jung, D.R. Yang, K.D. Jung, Bull. Korean Chem. Soc. 36, 2875 (2015)

    CAS  Google Scholar 

  25. A. Fazeli, A.A. Khodadadi, Y. Mortazavi, H. Manafi, Iran. J. Chem. Chem. Eng. 32, 45 (2013)

    CAS  Google Scholar 

  26. S. Sato, R. Takahashi, T. Sodesawa, K.-I. Yuma, Y. Obata, J. Catal. 196, 195 (2000)

    CAS  Google Scholar 

  27. J.R. Jensen, T. Johannessen, H. Livbjerg, Appl. Catal. A: Gen. 266, 117 (2004)

    CAS  Google Scholar 

  28. Z. Chen, X. Zhao, S. Wei, D. Wang, X. Zhang, J. Shan, Korean J. Chem. Eng. 39, 2983 (2022)

    CAS  Google Scholar 

  29. B. Sundquist, Acta Metall. 12, 67 (1964)

    CAS  Google Scholar 

  30. E. Giamello, B. Fubini, P. Lauro, A. Bossi, J. Catal. 87, 443 (1984)

    CAS  Google Scholar 

  31. T. Wang, X. Wang, Y. Gao, Y. Su, Z. Miao, C. Wang, L. Lu, L. Chou, X. Gao, J. Energy Chem. 24, 503 (2015)

    Google Scholar 

  32. K. Sonobe, M. Tanabe, T. Imaoka, W.J. Chun, K. Yamamoto, Chem. Eur. J. 27, 8452 (2021)

    CAS  PubMed  Google Scholar 

  33. C. Zhong, X. Guo, D. Mao, S. Wang, G. Wu, G. Lu, RSC Adv. 5, 52958 (2015)

    CAS  Google Scholar 

  34. C.R. Second, E. Edition, G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, W.V.V.G. KGaA, Co, Handbook of heterogeneous catalysis, 2008.

  35. P. Gao, F. Li, F. Xiao, N. Zhao, W. Wei, L. Zhong, Y. Sun, Catal. Today 194, 9 (2012)

    CAS  Google Scholar 

  36. Y. Zhang, L. Zhong, H. Wang, P. Gao, X. Li, S. Xiao, G. Ding, W. Wei, Y. Sun, J. CO2 Util. 15, 72 (2016)

    CAS  Google Scholar 

  37. V.D. Dasireddy, N.S. Štefančič, M. Huš, B. Likozar, Fuel 233, 103 (2018)

    CAS  Google Scholar 

  38. N. Chotigkrai, P. Tannititam, S. Piticharoenphun, N. Triamnak, S. Praserthdam, P. Praserthdam, Korean J. Chem. Eng. 39, 920 (2022)

    CAS  Google Scholar 

  39. Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S.U. Rahman, R. De Bold, D. Gibson, Vacuum 144, 217 (2017)

    CAS  Google Scholar 

  40. H. Tan, M.N. Hedhill, Y. Wang, J. Zhang, K. Li, S. Sioud, Z.A. Al-Talla, M.H. Amad, T. Zhan, O.E. Tall, Catal. Sci. Technol. 3, 3360 (2013)

    CAS  Google Scholar 

  41. X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, L. Liu, T. Du, P.A. Webley, Korean J. Chem. Eng. 38, 747 (2021)

    CAS  Google Scholar 

  42. L. Grabow, M. Mavrikakis, ACS Catal. 1, 365 (2011)

    CAS  Google Scholar 

  43. Z. Azizi, M. Rezaeimanesh, T. Tohidian, M.R. Rahimpour, Chem. Eng. Process. 82, 150 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge their co-workers for their valuable research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ju Moon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. This study was supported and funded by the Korea Institute of Science and Technology (Project No. 2E32562). The data presented in this study are available on request from the corresponding authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Ht., Kim, H.D., Yang, Yj. et al. Modified Cu–ZnO Catalysts Supported on the Mixture of ZnO and Zn–Al Oxide for Methanol Production via Hydrogenation of CO and CO2 Gas Mixture. Korean J. Chem. Eng. 41, 1375–1389 (2024). https://doi.org/10.1007/s11814-024-00022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00022-7

Keywords

Navigation