Skip to main content
Log in

The Development of Uncalcined Cu-Based Catalysts by Liquid Reduction Method for CO2 Hydrogenation to Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CO2 conversion to CH3OH plays an important role for the development of energy and the environment, but the preparation of high-performance Cu-based catalyst with high Cu dispersion remains a great challenge. In conventional co-precipitation method, calcination procedure is necessary to acquire stable catalyst for the sake of decomposing precursors, enhancing interaction, improving mechanical strength, even though high temperature treatment may lead to the aggregation of Cu nanoparticles. Herein, a simple liquid reduction strategy without calcination procedure is adopted to alleviate Cu nanoparticles aggregation for boosting the catalytic reactivity. Specifically, we explore catalysts prepared by different preparation methods with various roasting treatments for the synthesis of CH3OH, and the significance of calcination procedure on Cu-based catalysts obtained from different preparation methods is emphatically investigated. Cu–Zn–Al–Zr catalysts prepared by liquid reduction method have been decomposed to metal/metal oxides in the effect of NaBH4 without high-temperature calcination, and theses stable Cu–Zn–Al–Zr catalysts are directly applied to the synthesis of methanol to avoid sintering of Cu species caused by thermal roasting. The uncalcined CZAZ sample exhibits better catalytic activity than the calcined CZAZ-573 sample due to a higher Cu specific surface area, a stronger reducibility and a larger number of basic sites. The uncalcined CAZA catalyst exhibits outstanding catalytic activity with CO2 conversion of 23.2% and CH3OH selectivity of 64.3% at 523 K, and it maintains a stable STY of methanol during continuous 500 h operation. Liquid reduction method towards the development of uncalcined catalyst will potentially guide the rational design of a broad range of highly dispersed metal nanoparticles catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saeidi S, Amin NAS, Rahimpour MR (2014) J CO2 Util 5:66–81

    Article  CAS  Google Scholar 

  2. Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133:12881–12898

    Article  CAS  PubMed  Google Scholar 

  3. Atsbha TA, Yoon T, Seongho P, Lee CJ (2021) J CO2 Util 44:101413

    Article  CAS  Google Scholar 

  4. Zhang XB, Zhang GH, Song CS, Guo XW (2021) Front Energy Res 8:621119

    Article  Google Scholar 

  5. Sha F, Han Z, Tang S, Wang JJ, Li C (2020) Chemsuschem 13:6160–6181

    CAS  PubMed  Google Scholar 

  6. Li CM, Chen K, Wang XY, Xue N, Yang HQ (2021) Acta Phys-Chim Sin 37:2009101

    Google Scholar 

  7. Lam E, Noh G, Larmier K, Safonova OV, Coperet C (2021) J Catal 394:266–272

    Article  CAS  Google Scholar 

  8. Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlogl R (2012) Science 336:893–897

    Article  CAS  PubMed  Google Scholar 

  9. Dasireddy VDBC, Likozar B (2019) Renew Energ 140:452–460

    Article  CAS  Google Scholar 

  10. Fajin JLC, Cordeiro MNDS (2021) Appl Surf Sci 542:148589

    Article  CAS  Google Scholar 

  11. Cao AM, Lu RW, Veser G (2010) Phys Chem Chem Phys 12:13499–13510

    Article  CAS  PubMed  Google Scholar 

  12. Alvarez-Garcia A, Florez E, Moreno A, Jimenez-Orozco C (2020) Mol Catal 484:110733

    Article  CAS  Google Scholar 

  13. Tada S, Otsuka F, Fujiwara K, Moularas C, Deligiannakis Y, Kinoshita Y, Uchida S, Honma T, Nishijima M, Kikuchi R (2020) ACS Catal 10:15186–15194

    Article  CAS  Google Scholar 

  14. Dong XS, Li F, Zhao N, Xiao FK, Wang JW, Tan YS (2016) Appl Catal B 191:8–17

    Article  CAS  Google Scholar 

  15. Dong XS, Li F, Zhao N, Tan YS, Wang JW, Xiao FK (2017) Chin J Catal 38:717–725

    Article  CAS  Google Scholar 

  16. Dong XS, Li F, Zhao N, Tan YS, Wang JW, Xiao FK (2017) Catal Lett 147:1235–1242

    Article  CAS  Google Scholar 

  17. Zhou G, He ZL, Dong XS (2021) Catal Lett 151:1091–1101

    Article  CAS  Google Scholar 

  18. Chang FW, Lai SC, Roselin LS (2008) J Mol Catal A 282:129–135

    Article  CAS  Google Scholar 

  19. Chang FW, Yu HY, Roselin LS, Yang HC (2005) Appl Catal A 290:138–147

    Article  CAS  Google Scholar 

  20. Backman BL, Rautiainen A, Lindblad M, Krause AOL (2009) Appl Catal A 360:183–191

    Article  CAS  Google Scholar 

  21. Hodge HA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Catal Today 72:133–144

    Article  CAS  Google Scholar 

  22. Faroldi BM, Lombardo EA, Cornaglia LM (2009) Appl Catal A 369:15–26

    Article  CAS  Google Scholar 

  23. Zhan GW, Huang JL, Du MM, Sun DH, Abdul-Rauf I, Lin WS, Hong YL, Li QB (2012) Chem Eng J 187:232–238

    Article  CAS  Google Scholar 

  24. Gao W, Qu G, Xu M, Chang S, Na W (2021) Fuel Cells 21:31–38

    Article  Google Scholar 

  25. Gao P, Li F, Zhao N, Xiao FK, Wei W, Zhong LS, Sun YH (2013) Appl Catal A 468:442–452

    Article  CAS  Google Scholar 

  26. Tisseraud C, Comminges C, Habrioux A, Pronier S, Pouilloux Y, Le Valant A (2018) Mol Catal 446:98–105

    Article  CAS  Google Scholar 

  27. Gao P, Li F, Xiao FK, Zhao N, Sun NN, Wei W, Zhong LS, Sun YH (2012) Catal Sci Technol 2:1447–1454

    Article  CAS  Google Scholar 

  28. Huang CL, Wen JJ, Sun YH, Zhang MY, Bao YF, Zhang YD, Liang L, Fu ML, Wu JL, Ye DQ, Chen LM (2019) Chem Eng J 374:221–230

    Article  CAS  Google Scholar 

  29. Hu J, Li YY, Zhen YP, Chen MS, Wan HL (2021) Chi J Catal 42:367–375

    Article  CAS  Google Scholar 

  30. Song TY, Chen W, Qi YY, Lu JQ, Wu P, Li XL (2020) Catal Sci Technol 10:5149–5162

    Article  CAS  Google Scholar 

  31. Zhang B, Zhu YF, Ding GQ, Zheng HY, Li YW (2012) Appl Catal A 443–444:191–201

    Article  Google Scholar 

  32. Dandekar A, Vannice MA (1998) J Catal 178:621–639

    Article  CAS  Google Scholar 

  33. Wang WW, Qu ZP, Song LX, Fu Q (2020) J Energy Chem 40:22–30

    Article  CAS  Google Scholar 

  34. Zhang YX, Guo XY, Liu B, Zhang JL, Gao XH, Ma QX, Fan SB, Zhao TS (2021) Fuel 294:120504

    Article  CAS  Google Scholar 

  35. Cao GQ, Deskins NA, Yi N (2021) Appl Catal B 285:119748

    Article  CAS  Google Scholar 

  36. Dupin JC, Gonbeau D, Vinatierb P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  37. Ding JF, Li LP, Wang Y, Li HX, Yang M, Li GS (2020) Nanoscale 12:14882–14894

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Wang Z, Tang YY, Qiao NL, Li Y, Qu SQ, Hao ZP (2015) Catal Sci Technol 5:4991–4999

    Article  CAS  Google Scholar 

  39. Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) Appl Catal B 152–153:152–161

    Article  Google Scholar 

  40. Tan MH, Tian S, Zhang T, Wang KZ, Xiao LW, Liang JM, Ma QX, Yang GH, Tsubaki N, Tan YS (2021) ACS Catal 11:4633–4643

    Article  CAS  Google Scholar 

  41. Zhu QF, Zhang QC, Wen LX (2017) Fuel Process Technol 156:280–289

    Article  CAS  Google Scholar 

  42. Ramli MZ, Syed-Hassan SSA, Hadi A (2018) Fuel Process Technol 169:191–198

    Article  CAS  Google Scholar 

  43. Gao P, Li F, Zhan HJ, Zhao N, Xiao FK, Wei W, Zhong LS, Wang H, Sun YH (2013) J Catal 298:51–60

    Article  CAS  Google Scholar 

  44. Xaba BS, Mahomed AS, Friedrich HB (2021) J Environ Chem Eng 9:104834

    Article  CAS  Google Scholar 

  45. Sadeghinia M, Rezaei M, Kharat AN, Jorabchi MN, Nematollahi B, Zareiekordshouli F (2020) Mol Catal 484:110776

    Article  CAS  Google Scholar 

  46. Ruland H, Song HQ, Laudenschleger D, Sturmer S, Schmidt S, He JY, Kahler K, Muhler M, Schlogl R (2020) ChemCatChem 12:3216–3222

    Article  CAS  Google Scholar 

  47. Ahmad K, Upadhyayula S (2019) Sustain Energ Fuels 3:2509–2520

    Article  CAS  Google Scholar 

  48. Chen SY, Zhang JF, Song FE, Zhang QD, Yang GH, Zhang M, Wang XX, Xie HJ, Tan YS (2020) J Catal 389:47–59

    Article  CAS  Google Scholar 

  49. Witoon T, Permsirivanich T, Donphai W, Jaree A, Chareonpanich M (2013) Fuel Process Technol 116:72–78

    Article  CAS  Google Scholar 

  50. Sun YH, Huang CL, Chen LM, Zhang YJ, Fu ML, Wu JL, Ye DQ (2019) J CO2 Util 37:55–64

    Article  Google Scholar 

  51. Gao P, Xie RJ, Wang H, Zhong LS, Xia L, Zhang ZZ, Wei W, Sun YH (2015) J CO2 Util 11:41–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Provenience (Grant No. ZR2021QE237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Ma, S. & Gao, P. The Development of Uncalcined Cu-Based Catalysts by Liquid Reduction Method for CO2 Hydrogenation to Methanol. Catal Lett 153, 1696–1707 (2023). https://doi.org/10.1007/s10562-022-04093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04093-1

Keywords

Navigation