Skip to main content
Log in

Efficient Electrochemical Reduction of High Concentration Nitrate by a Stepwise Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A combined anode, Ti/IrO2 (0–3.5 h)–Ti/RuO2 (3.5–7 h) is designed to promote the removal of high concentration of nitrate by a stepwise method. During the electrolysis process, Ti/IrO2 is used as anode at the first stage to promote the generation of ammonia-N and then Ti/RuO2 is switched as anode at the next stage to enhance the chlorine evolution. The generated Cl2 will further react with H2O to produce ClO, which will oxidize ammonia-N to N2, therefore improve the nitrate removal efficiency. Results shown that both of the reduction of nitrate and oxidation of the by-product of ammonia-N are enhanced and the total nitrogen removal efficiency is 85% when the initial nitrate concentration is 500 mg L−1. The avoid using cation exchange membrane not only efficiently reduces the operation cost but also simplifies the operation and maintain procedure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rivett MO, Buss SR, Morgan P, Smith JW, Bemment CD (2008) Water Res 42:4215–4232

    Article  CAS  PubMed  Google Scholar 

  2. Chan TY (2011) Toxicol Lett 200:107–108

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P (2018) Appl Catal B 236:546–568

    Article  CAS  Google Scholar 

  4. Jia YH, Tran HT, Kim DH, Oh SJ, Park DH, Zhang RH, Ahn DH (2008) Bioprocess Biosyst Eng 31:315–321

    Article  CAS  PubMed  Google Scholar 

  5. Winkler M, Coats ER, Brinkman CK (2011) Water Res 45:6119–6130

    Article  CAS  PubMed  Google Scholar 

  6. Epsztein R, Nir O, Lahav O, Green M (2015) Chem Eng J 279:372–378

    Article  CAS  Google Scholar 

  7. Schoeman JJ, Steyn A (2003) Desalination 155:15–26

    Article  CAS  Google Scholar 

  8. Kalaruban M, Loganathan P, Shim WG, Kandasamy J, Naidu G, Nguyen TV, Vigneswaran S (2016) Sep Purif Technol 158:62–70

    Article  CAS  Google Scholar 

  9. Terry PA (2009) Environ Eng Sci 26:691–696

    Article  CAS  Google Scholar 

  10. Xie D, Li C, Tang R, Lv Z, Ren Y, Wei C, Feng C (2014) Electrochem Commun 46:99–102

    Article  CAS  Google Scholar 

  11. Li M, Feng C, Zhang Z, Yang S, Sugiura N (2010) Bioresour Technol 101:6553–6557

    Article  CAS  PubMed  Google Scholar 

  12. Martínez J, Ortiz A, Ortiz I (2017) Appl Catal B 207:42–59

    Article  CAS  Google Scholar 

  13. Lange R, Maisonhaute E, Robin R, Vivier V (2013) Electrochem Commun 29:25–28

    Article  CAS  Google Scholar 

  14. Lan H, Liu X, Liu H, Liu R, Hu C, J Qu (2016) Catal Lett 146: 91–99

    Article  CAS  Google Scholar 

  15. Szpyrkowicz L, Daniele S, Radaelli M, Specchia S (2006) Appl Catal B 66:40–50

    Article  CAS  Google Scholar 

  16. Lacasa E, Cañizares P, Llanos J, Rodrigo MA (2012) J Hazard Mater 213–214:478–484

    Article  CAS  PubMed  Google Scholar 

  17. Ding J, Li W, Zhao Q-L, Wang K, Zheng Z, Gao Y-Z (2015) Chem Eng J 271:252–259

    Article  CAS  Google Scholar 

  18. Martin de Vidales MJ, Millán M, Sáez C, Cañizares P, Rodrigo MA (2016) Electrochem Commun 67:65–68

    Article  CAS  Google Scholar 

  19. Estudillo-Wong LA, Arce-Estrada EM, Alonso-Vante N, Manzo-Robledo A (2011) Catal Today 166:201–204

    Article  CAS  Google Scholar 

  20. Dima GE, de Vooys ACA, Koper MTM (2003) J Electroanal Chem 554:15–23

    Article  CAS  Google Scholar 

  21. Hu C, Dong J, Wang T, Liu R, Liu H, Qu J (2018) Chem Eng J 335:475–482

    Article  CAS  Google Scholar 

  22. Soares OSGP, Órfão JJM, Pereira MFR (2008) Catal Lett 126:253–260

    Article  CAS  Google Scholar 

  23. El-Deab MS (2004) Electrochim Acta 49:1639–1645

    Article  CAS  Google Scholar 

  24. Polatides C, Kyriacou G (2005) J Appl Electrochem 35:421–427

    Article  CAS  Google Scholar 

  25. Li M, Feng C, Zhang Z, Sugiura N (2009) Electrochim Acta 54:4600–4606

    Article  CAS  Google Scholar 

  26. Reyter D, Bélanger D, Roué L (2010) Water Res 44:1918–1926

    Article  CAS  PubMed  Google Scholar 

  27. Yang C, Zhang QB, Gao MY, Hua YX, Xu CY (2016) J Electrochem Soc 163:D469–D475

    Article  CAS  Google Scholar 

  28. Mattarozzi L, Cattarin S, Comisso N, Gerbasi R, Guerriero P, Musiani M, Vázquez-Gómez L, Verlato E (2015) J Electrochem Soc 162:D236–D241

    Article  CAS  Google Scholar 

  29. Ghodbane O, Sarrazin M, Roué L, Bélanger D (2008) J Electrochem Soc 155:F117–F123

    Article  CAS  Google Scholar 

  30. Soares OSGP, Órfão JJM, Pereira MFR (2010) Catal Lett 139:97–104

    Article  CAS  Google Scholar 

  31. Dash BP, Chaudhari S (2005) Water Res 39:4065–4072

    Article  CAS  PubMed  Google Scholar 

  32. Kim K-W, Kim Y-J, Kim I-T, Park G, II, Lee E-H (2006) Water Res 40:1431–1441

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Xiao C, Zhao Y, Zhao Q, Fan R, Xue J (2016) Catal Lett 146:2585–2595

    Article  CAS  Google Scholar 

  34. Diaz V, Ibanez R, Gomez P, Urtiaga AM, Ortiz I (2011) Water Res 45:125–134

    Article  CAS  PubMed  Google Scholar 

  35. Vanlangendonck Y, Corbisier D, Van Lierde A (2005) Water Res 39:3028–3034

    Article  CAS  PubMed  Google Scholar 

  36. Kim KW, Kim YJ, Kim IT, Park GI, Lee EH (2006) Water Res 40:1431–1441

    Article  CAS  PubMed  Google Scholar 

  37. Paidar M, Bouzek K, Jelínek L, Mat Z (2004) Water Environ Res 76:2691–2698

    Article  CAS  PubMed  Google Scholar 

  38. Wu L-K, Liu X-Y, Hu J-M (2016) J Mater Chem A 4:11949–11956

    Article  CAS  Google Scholar 

  39. APHA, WPCF AWWA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  40. Rosero-Navarro NC, Pellice SA, Castro Y, Aparicio M, Duran A (2009) Surf Coat Technol 203:1897–1903

    Article  CAS  Google Scholar 

  41. Kuang P, Feng C, Li M, Chen N, Hu Q, Wang G, Li R (2017) J Electrochem Soc 164:E103–E112

    Article  CAS  Google Scholar 

  42. Su L, Li K, Zhang H, Fan M, Ying D, Sun T, Wang Y, Jia J (2017) Water Res 120:1–11

    Article  CAS  PubMed  Google Scholar 

  43. Pletcher D, Poorabedi Z (1980) Cheminform 24:1253–1256

    Google Scholar 

  44. Katsounaros I, Kyriacou G (2007) Electrochim Acta 52:6412–6420

    Article  CAS  Google Scholar 

  45. Li L, Liu Y (2009) J Hazard Mater 161:1010–1016

    Article  CAS  PubMed  Google Scholar 

  46. Pressley TA, Bishop DF, Roan SG (1973) Environ Sci Technol 6:622–628

    Article  Google Scholar 

  47. Ghazouani M, Akrout H, Bousselmi L (2015) Desalin Water Treatment 53:1107–1117

    CAS  Google Scholar 

  48. Fan N, Li Z, Zhao L, Wu N, Zhou T (2013) Chem Eng J 214:83–90

    Article  CAS  Google Scholar 

  49. Barada Prasanna Dash SC (2005) Water Res 39: 4065–4072

    Article  CAS  PubMed  Google Scholar 

  50. Li M, Feng C, Zhang Z, Shen Z, Sugiura N (2009) Electrochem Commun 11:1853–1856

    Article  CAS  Google Scholar 

  51. Su L, Li K, Zhang H, Fan M, Ying D, Sun T, Wang Y, J Jia (2017) Water Res 120: 1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Zhejiang Province (No. LY18E010005), Talent Project of Zhejiang Association for Science and Technology (No. 2017YCGC015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-Kui Wu or Guo-Qu Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LK., Shi, YJ., Su, C. et al. Efficient Electrochemical Reduction of High Concentration Nitrate by a Stepwise Method. Catal Lett 149, 1216–1223 (2019). https://doi.org/10.1007/s10562-019-02715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02715-9

Keywords

Navigation