Skip to main content
Log in

Electrochemical reduction of nitrate ion on various cathodes – reaction kinetics on bronze cathode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Summary

The electrochemical reduction of NO -3 in 0.1 M K2SO4 and 0.05 M KNO3 solution was studied on various electrodes in two different cell configurations, a divided and an undivided one. The products in all cases were NO -2 , NH3, N2 and small amounts of NO2 and NO. The more efficient cathodes as regards the conversion of NO -3 to N2 were Al and the alloy Sn85Cu15, where the selectivity for nitrogen formation was 43 and 35.3% at −1.8 and −2.0 V, respectively. The kinetic analysis of the experimental results was carried out by numerical solution of the resulted differential equations according to the scheme: \(NO_{3}^{-} {\buildrel k_{1} \over \rightarrow} NO_{2}^{-} {\buildrel k_{2} \over \rightarrow} NH_{3}\) \(NO_{2}^{-} {\buildrel k_{3} \over \rightarrow} N_{2}\) The rate constants on Sn85Cu15 at −2.0 V for the above reactions were found to be k1=4.9 × 10−4 s−1, k2=1.76 × 10−5 s−1 and k3=7.66 × 10−3 l mol−1 s−1. At more negative potential more NO -2 ions reduced and converted either to N2 or NH3. The rate constant of reduction of nitrate was almost the same in the region between −1.7 and −2.0 V, because the reaction is limited by the diffusion. In order to oxidize a part of the undesirable byproducts NO -2 and NH3 at the anode of the cell to nitrate and nitrogen respectively, an undivided cell was used. Comparison between the two cell configurations indicated that, although in the undivided cell the % removal efficiency of nitrate was lower than that in the divided one, the selectivities of NO -2 and NH3 were 4.8 and 2.2 times lower, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Strebel W.H.M. Duynisveld J. Boettcher (1989) Agric. Ecosyst. Environ. 26 189

    Google Scholar 

  2. InstitutionalAuthorNameEEC Council directive on the quality of water for human consumption (No-80/778 off) (1980) J. EEC. 229 11–29

    Google Scholar 

  3. WHO, Guidelines for Drinking water Quality, Geneva 1993

  4. V. Mateju S. Cizinska J. Krejci J. Tomas (1992) Enzyme. Microb. Tech. 14 170

    Google Scholar 

  5. L. Panyor C. Fabiani (1996) Desalination 104 165

    Google Scholar 

  6. J.J. Schoeman A. Steyn (2003) Desalination 155 15

    Google Scholar 

  7. K.N. Mani (1991) J. Membrane Sci. 58 117

    Google Scholar 

  8. C. Huang H. Warg P. Chiu (1998) Wat. Res. 32 2257

    Google Scholar 

  9. W. Gao N. Guan J. Chen G. Gyan R. Jin H. Zeng Z. Liu F. Zhang (2003) Appl. Catal. B 46 341

    Google Scholar 

  10. F. Gauthard F. Epron J. Barbier (2003) J. Catal. 220 182

    Google Scholar 

  11. C. Ottley N. Davison W. Edmunds (1997) Geochim. Cosmochim. Acta 61 1819

    Google Scholar 

  12. K. Inazu M. Kitahara K. Aika (2004) Catal. Today 93–95 263

    Google Scholar 

  13. U. Prusse M. Hahnlein J. Daum K.D. Vorlop (2000) Catal. Today 55 79

    Google Scholar 

  14. W. Gao N. Guan J. Chen X. Guan R. Jin H. Zeng Z. Liu F. Zhang (2003) Appl. Catal. B 46 341

    Google Scholar 

  15. M. Paidar I. Rousar K. Bouzek (1999) J. Appl. Electrochem. 29 611

    Google Scholar 

  16. S. Ureta C. Yanez (1997) Electrochim. Acta 42 1725

    Google Scholar 

  17. J. Gootzen P. Peeters J. Dukers L. Lefferts W. Visscher J. Van Veen (1997) J. Electroanal. Chem. 434 171

    Google Scholar 

  18. H. Li D. Robertson J. Chambers D. Hobbs (1988) J. Electrochem. Soc. 135 1154

    Google Scholar 

  19. J. Bockris J. Kim (1997) J. Appl. Electrochem. 27 623

    Google Scholar 

  20. L.J.J. Janssen M.M.J. Pieterse E. Barendrecht (1976) Electrochim. Acta 22 27

    Google Scholar 

  21. O. Rutten A. Sandwijk ParticleVan G. Weert ParticleVan (1999) J. Appl. Electrochem. 29 87

    Google Scholar 

  22. Y. Xiang D. Zhou J.F. Rushling (1997) J. Electroanal. Chem. 424 1

    Google Scholar 

  23. N. Chebotareva T. Nyokong (1997) J. Appl. Electrochem. 27 975

    Google Scholar 

  24. J.O’M. Bockris J. Kim (1996) J. Electrochem. Soc. 143 3801

    Google Scholar 

  25. K. Bouzek M. Paidar A. Sadlikova H. Bergmann (2001) J. Appl. Electrochem. 31 1185

    Google Scholar 

  26. A.C.A. Vooys Particlede R.A. Santen Particlevan J.A.R. Veen Particlevan (2000) J. Mol. Catal. A 154 203

    Google Scholar 

  27. G. Horanyi E.M. Rizmayer (1983) J. Electroanal. Chem. 143 323

    Google Scholar 

  28. G. Horanyi E.M. Rizmayer (1992) J. Electroanal. Chem. 331 897

    Google Scholar 

  29. H.L. Li J.Q. Chambers D.T. Hobbs (1988) J. Appl. Electrochem. 18 454

    Google Scholar 

  30. G.E. Dima A.C.A. Vooys Particlede M.T.M. Koper (2003) J. Electroanal. Chem. 554 15

    Google Scholar 

  31. J.F.E. Gootzen L. Lefferts J.A.R. Veen ParticleVan (1999) Appl. Catal. 188 127

    Google Scholar 

  32. J. Genders D. Hartsough D. Hobbes (1996) J. Appl. Electrochem. 26 1

    Google Scholar 

  33. L.S. Clesceri, A.E. Greenberg, R.R. Trussell, ‘Standard Methods for the Examination of Water and Wastwater’, 17th edn. (American Public Health Association, Washington, DC, 1989), pp. 4–120, 4–129 and 4–131

  34. G.W. Watt J.D. Chrisp (1952) Anal. Chem. 24 2006

    Google Scholar 

  35. F. Dias A.S. Olojola B. Jaselskis (1979) Talanta 26 47

    Google Scholar 

  36. S. Kerkeni E. Lamy-Pitara J. Barbier (2002) Catal. Today 75 35

    Google Scholar 

  37. K. Shimazu R. Goto K. Tada (2002) Chem. Lett. 2 204

    Google Scholar 

  38. K. Tada T. Kawaguchi K. Shimazu (2004) J. Electroanal. Chem. 572 93

    Google Scholar 

  39. K. Shimazu T. Kawaguchi K. Tada (2002) J. Electroanal. Chem. 529 20

    Google Scholar 

  40. G. Sakellaropoulos (1979) AIChE J. 25 781

    Google Scholar 

  41. J.C. Butcher (2000) J. Comp. Appl. Math. 125 1

    Google Scholar 

  42. D. De E.E. Kalu P.P. Tarjan J.D. Englehardt (2004) Chem. Eng. Technol. 27 56

    Google Scholar 

  43. R.B. Bird, W.E. Stewart and E.N. Lightfoot, ‘Transport Phenomena’ (J. Wiley & Sons, 1960) 533 pp.

  44. R.C. Reid J.M. Prausnitz B.E. Poling (1987) The Properties of Gases and Liquids EditionNumber4 McGraw Hill Inc. New York

    Google Scholar 

  45. J.F.E. Gootzen A.H. Wonders W. Visscher R.A. Santen Particlevan J.A.R. Veen Particlevan (1998) Electrochim. Acta 43 1851

    Google Scholar 

  46. C. Polatides, M. Dortsiou and G. Kyriacou, Proceedings of 55th ISE Meeting Thessaloniki, September 2004, 333pp

  47. H. Li D.H. Robertson J. Chambers D. Hobbs (1988) J. Electrochem. Soc. 135 1154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kyriacou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polatides, C., Kyriacou, G. Electrochemical reduction of nitrate ion on various cathodes – reaction kinetics on bronze cathode. J Appl Electrochem 35, 421–427 (2005). https://doi.org/10.1007/s10800-004-8349-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-004-8349-z

Keywords

Navigation