Skip to main content
Log in

Efficient Nitrate Reduction in a Fluidized Electrochemical Reactor Promoted by Pd–Sn/AC Particles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pd–Sn modified activated carbon (Pd–Sn/AC) was prepared by impregnation of Pd and Sn salts onto AC followed by heat treatment. Based on scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis, Pd–Sn alloy was highly dispersed on the surface of AC with a atomic ratio of about 4.21. A double electrolysis cell was established and separated via a proton-exchange membrane. In the cathodic cell compartment, the as-prepared Pd–Sn/AC was used as particle electrodes where electrolytic reduction of nitrate was performed. A batch mode study showed that at an applied current of 30 mA with 7.5 g/L catalyst, over 90 % of the nitrate could be reduced in 80 min when the nitrate initial concentration was 24.6 mg/L. The electro-catalytic process of nitrate reduction could be satisfactorily described with a first-order kinetics model. With increasing applied current, the nitrate removal rate increased; whereas, the NH4 + concentration increased as well. The inhibition effect of co-existing anions and cations on nitrate reduction followed this order: Fe3+ > Mn2+ > Ca2+ > Na+ and Cl < SO4 2− < HCO3 .

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United States Environmental Protection Agency (2000) National Water Quality Inventory; EPA 816-R-00-013; USEPA Office of Water: Washington, DC

  2. Canter LW (1996) Nitrates in groundwater. CRC Press, Boca Raton

    Google Scholar 

  3. Nolan BT, Ruddy BC, Hitt KJ, Helsel DR (1997) Environ Sci Technol 31:2229–2236

    Article  CAS  Google Scholar 

  4. Tepuš B, Simonič M, Petrinić I (2009) J Hazard Mater 170:1210–1217

    Article  Google Scholar 

  5. Samatya S, Kabay N, Yüksel U, Arda M, Yüksel M (2006) React Funct Polym 66:1206–1214

    Article  CAS  Google Scholar 

  6. Rezania B, Oleszkiewicz JA, Cicek N (2007) Water Res 41:1074–1080

    Article  CAS  Google Scholar 

  7. Moon HS, Ahn K-H, Lee S, Nam K, Kim JY (2004) Environ Pollut 129:499–507

    Article  CAS  Google Scholar 

  8. Vorlop KD, Tacke T (1989) Chem Ing Tech 61:836–845

    Article  CAS  Google Scholar 

  9. Prüsse U, Hähnlein M, Daum J, Vorlop K (2000) Catal Today 55:79–90

    Article  Google Scholar 

  10. Mikami I, Kitayama R, Okuhara T (2006) Appl Catal A 297:24–30

    Article  CAS  Google Scholar 

  11. Pintar A (2003) Catal Today 77:451–465

    Article  CAS  Google Scholar 

  12. Sá J, Vinek H (2005) Appl Catal B 57:247–256

    Article  Google Scholar 

  13. Nakamura K, Yoshida Y, Mikami I (2006) Appl Catal B 65:31–36

    Article  CAS  Google Scholar 

  14. Maia MP, Rodrigues MA, Passos FB (2007) Catal Today 123:171–176

    Article  CAS  Google Scholar 

  15. Wan D, Liu H, Zhao X, Qu J, Xiao S, Hou Y (2009) Colloid Interface Sci 332:151–157

    Article  CAS  Google Scholar 

  16. Peel JW, Reddy KJ, Sullivan BP, Bowen JM (2003) Water Res 37:2512–2519

    Article  CAS  Google Scholar 

  17. Dima GE, Vooys ACA (2003) Electroanal Chem 554–555:15–23

    Article  Google Scholar 

  18. Kerkeni S, Lamy-Pitara E, Barbier J (2002) Catal Today 75:35–42

    Article  CAS  Google Scholar 

  19. Vooys ACA, Santen RA, Veen JAR (2000) J Mol Catal A 154:203–215

    Article  Google Scholar 

  20. Gootzen JFE, Lefferts L, Veen JAR (1999) Appl Catal A 188:127–136

    Article  CAS  Google Scholar 

  21. Tenne R, Patel K, Hashimoto K, Fujishima A (1993) J Electroanal Chem 347:409–415

    Article  CAS  Google Scholar 

  22. Shimazu K, Goto R, Keijiro T (2002) Chem Lett 31:204–205

    Article  Google Scholar 

  23. Wang Y, Qu J, Wu R, Lei P (2006) Water Res 40:1224–1232

    Article  CAS  Google Scholar 

  24. Arana J, Ramirez de la Piscina P, Llorca J, Sales J, Homs N (1998) Chem Mater 10:1333–1342

    Article  CAS  Google Scholar 

  25. Beck DE, Heitzinger JM, Avoyan A, Koel BE (2001) Surf Sci 491(1–2):48–62

    Article  CAS  Google Scholar 

  26. Prusse U, Vorlop KD, Mol J (2001) Catal A 173:313–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Funds of the National Natural Science Foundation of China (Grant Nos. 51478455 and 51221892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, H., Liu, X., Liu, H. et al. Efficient Nitrate Reduction in a Fluidized Electrochemical Reactor Promoted by Pd–Sn/AC Particles. Catal Lett 146, 91–99 (2016). https://doi.org/10.1007/s10562-015-1615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1615-3

Keywords

Navigation