Skip to main content
Log in

TiO2–Hydroxyapatite Composite as a New Support of Highly Active and Sintering-Resistant Gold Nanocatalysts for Catalytic Oxidation of CO and Photocatalytic Degradation of Methylene Blue

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Supported gold catalysts have attracted intensive interest due to their unique catalytic properties. The easy sintering of gold particles, however, is still the major obstacle to the practical application of gold catalysts. Herein, a highly active and sintering-resistant TiO2–hydroxyapatite (HAP, Ca10(PO4)6(OH)2) composite supported gold catalyst was prepared by a deposition–precipitation method. TEM results manifested TiO2–HAP had smaller gold nanoparticles than TiO2 and HAP. Patterns of TG–DTG revealed that the presence of HAP inhibited the phase transformation from anatase to rutile. Based on UV–Vis and BET studies, HAP prevented the formation of large TiO2 agglomerates, leading to higher dispersion of TiO2 nanoparticles in TiO2–HAP composites. Au/TiO2–HAP had the higher activity and sintering-resistance compared with Au/TiO2 and Au/HAP for CO oxidation. TiO2–HAP and Au/TiO2–HAP exhibited the best photocatalytic activity among supports and gold nanocatalysts, respectively. Gold nanoparticles could further improve the photocatalytic performance. It was likely that the synergistic interaction among gold nanoparticles, TiO2 and HAP was responsible for the high activity and sintering-resistance of Au/TiO2–HAP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu RH, Gao NS, Zhen F et al (2013) Doping effect of Al2O3 and CeO2 on Fe2O3 support for gold catalyst in CO oxidation at low-temperature. Chem Eng J 225:245–253

    Article  CAS  Google Scholar 

  2. Wang JD, Liu JK, Lu Y et al (2014) Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials. Mater Res Bull 55:190–197

    Article  CAS  Google Scholar 

  3. Tang HL, Wei JK, Liu F et al (2016) Strong metal–support interactions between gold nanoparticles and nonoxides. J Am Chem Soc 138:56–59

    Article  CAS  Google Scholar 

  4. del Río E, Hungría AB, Tinoco M et al (2016) CeO2-modified Au/TiO2 catalysts with outstanding stability under harsh CO oxidation conditions. Appl Catal B: Environ 197:86–94

    Article  Google Scholar 

  5. Zhao KF, Qiao BT, Wang JH et al (2011) A highly active and sintering-resistant Au/FeOx–hydroxyapatite catalyst for CO oxidation. Chem Commun 47:1779–1781

    Article  CAS  Google Scholar 

  6. Zhao KF, Qiao BT, Zhang YJ et al (2013) The roles of hydroxyapatite and FeOx in a Au/FeOx-hydroxyapatite catalyst for CO oxidation. Chin J Catal 34:1386–1394

    Article  CAS  Google Scholar 

  7. Huang J, Wang LC, Liu YM et al (2011) Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation. Appl Catal B 101(3–4):560–569

    Article  CAS  Google Scholar 

  8. Fang J, Li JG, Zhang B et al (2015) The support effect on the size and catalytic activity of thiolated Au25 nanoclusters as precatalysts. Nanoscale 7:6325–6333

    Article  CAS  Google Scholar 

  9. El-Moemen AA, Abdel-Mageed AM, Bansmann J et al (2016) Deactivation of Au/CeO2 catalysts during CO oxidation: influence of pretreatment and reaction conditions. J Catal 341:160–179

    Article  Google Scholar 

  10. Dominguez MI, Romero-Sarria F, Centeno MA et al (2009) Gold/hydroxyapatite catalysts: synthesis, characterization and catalytic activity to CO oxidation. Appl Catal B 87(3–4):245–251

    Article  CAS  Google Scholar 

  11. Wang Y, Chen BB, Crocker M et al (2015) Understanding on the origins of hydroxyapatite stabilized gold nanoparticles as high-efficiency catalysts for formaldehyde and benzene oxidation. Catal Commun 59:195–200

    Article  CAS  Google Scholar 

  12. Calla JT, Davis RJ (2005) Influence of dihydrogen and water vapor on the kinetics of CO oxidation over Au/Al2O3. Ind Eng Chem Res 44(14):5403–5410

    Article  CAS  Google Scholar 

  13. Wang WH, Cao GY (2006) Size effect of gold sol/y-alumina on the catalytic activities of CO oxidation. Chin J Chem, 24(6):817–821

    Article  CAS  Google Scholar 

  14. Sun B, Feng XZ, Yao Y et al (2013) Substantial pretreatment effect on CO oxidation over controllably synthesized Au/FeOx hollow nanostructures via hybrid Au/β-FeOOH@SiO2. ACS Catal 3(12):3099–3105

    Article  CAS  Google Scholar 

  15. Liu Y, Jia CJ, Yamasaki J et al (2010) Highly active iron oxide supported gold catalysts for CO oxidation: how small must the gold nanoparticles be? Angew Chem Int Ed 49(33):5771–5775

    Article  CAS  Google Scholar 

  16. Mallick K, Scurrell MS (2003) CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO. Appl Catal A 253(2):527–536

    Article  CAS  Google Scholar 

  17. Sun CH, Smith SC (2012) Strong interaction between gold and anatase TiO2 (001) predicted by first principle studies. J Phys Chem C 116(5):3524–3531

    Article  CAS  Google Scholar 

  18. Phonthammachai N, Zhong ZY, Guo J et al (2008) Synthesis of high performance hydroxyapatite-gold catalysts for CO oxidaton. Gold Bull 41(1):42–50

    Article  CAS  Google Scholar 

  19. Mohamed RM, Baeissaa ES (2013) Preparation and characterisation of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light. Appl Catal A 464–465:218–224

    Article  Google Scholar 

  20. Liu Y, Liu CY, Wei JH et al (2010) Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag–TiO2 powders. Appl Surf Sci 256(21):6390–6394

    Article  CAS  Google Scholar 

  21. Zhao H, Zhang P, Wang YD et al (2014) Au/TiO2 nanotube catalysts prepared by combining sol–gel method with hydrothermal treatment and their catalytic properties for CO oxidation. J Sol-Gel Sci Technol 71(3):406–412

    Article  CAS  Google Scholar 

  22. Okuno T, Kawamura G, Muto H et al (2015) Three modes of high-efficient photocatalysis using composites of TiO2-nanocrystallite-containing mesoporous SiO2 and Au nanoparticles. J Sol-Gel Sci Technol 74(3):748–755

    Article  CAS  Google Scholar 

  23. Giannakopouloua T, Todorova N, Romanos G et al (2012) Composite hydroxyapatite/TiO2 materials for photocatalytic oxidation of NOx. Mat Sci Eng B 177(13):1046–1052

    Article  Google Scholar 

  24. Zanella R, Giorgio S, Shin C-H et al (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222(2):357–367

    Article  CAS  Google Scholar 

  25. Carrot G, Valmalette JC, Plummer CJG et al (1998) Gold nanoparticle synthesis in graft copolymer micelles. Colloid Polym Sci 276(10):853–859

    Article  CAS  Google Scholar 

  26. Westcott SL, Oldenburg SJ, Lee TR et al (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401

    Article  CAS  Google Scholar 

  27. Parida KM, Sahua N, Mohapatra P et al (2010) Low temperature CO oxidation over gold supported mesoporous Fe–TiO2. J Mol Catal A 319(1–2):92–97

    Article  CAS  Google Scholar 

  28. Zhang P, Yu HH, Li JJ et al (2016) Au/BiPO4 nanorod catalysts: synthesis, characterization and their catalytic performance for CO oxidation. RSC Adv 6:15304–15312

    Article  CAS  Google Scholar 

  29. Westcott SL, Oldenburg SJ, Lee TR et al (1999) Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions. Chem Phys Lett 300(5–6):651–655

    Article  CAS  Google Scholar 

  30. Mohamed RM, Aazam ES (2011) Preparation and characterization of platinum doped porous titania nanoparticles for photocatalytic oxidation of carbon monoxide. J Alloys Compd 509(41):10132–10138

    Article  CAS  Google Scholar 

  31. Ke YH, Qin XX, Liu CL et al (2014) Oxidative esterification of ethylene glycol in methanol to form methyl glycolate over supported Au catalysts. Catal Sci Technol 4:3141–3150

    Article  CAS  Google Scholar 

  32. Liu HM, Yang WS, Ma Y et al (2003) Synthesis and characterization of titania prepared by using a photoassisted sol-gel method. Langmuir 19(7):3001–3005

    Article  CAS  Google Scholar 

  33. Nagarjuna M, Satyanarayana T, Gandhi Y et al (2009) Influence of Ag2O on some physical properties of LiF–TiO2–P2O5 glass system. J Alloys Compd 479(1–2):549–556

    Article  CAS  Google Scholar 

  34. Chowdari BVR, Rao GVS, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ionics 136–137:1067–1075

    Article  Google Scholar 

  35. Krischok S, Blank C, Engel M et al (2007) Influence of ion implantation on titanium surfaces for medical applications. Surf Sci 601(18):3856–3860

    Article  CAS  Google Scholar 

  36. Wu ZW, Zhu HQ, Qin ZF et al (2010) Preferential oxidation of CO in H2-rich stream over CuO/Ce1 – xTixO2 catalysts. Appl Catal B 98(3–4):204–212

    Article  CAS  Google Scholar 

  37. Ma Z, Yin HF, Overbury SH et al (2008) Metal phosphates as a new class of supports for gold nanocatalysts. Catal Lett 126(1–2):20–30

    Article  CAS  Google Scholar 

  38. Chen YW, Chen HJ, Lee DS (2012) Au/Co3O4–TiO2 catalysts for preferential oxidation of CO in H2 stream. J Mol Catal A 363–364:470–480

    Article  Google Scholar 

  39. Li X, Fang SSS, Teo J et al (2012) Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catal 2(3):360–369

    Article  CAS  Google Scholar 

  40. Gopi D, Shinyjoy E, Kavitha L (2015) Influence of ionic substitution in improving the biological property of carbon nanotubes reinforced hydroxyapatite composite coating on titanium for orthopedic applications. Ceram Int 41(4):5454–5463

    Article  CAS  Google Scholar 

  41. Sathyaseelana B, Manikandan E, Lakshmanane V et al (2016) Structural, optical and morphological properties of post-growth calcined TiO2 nanopowder for opto-electronic device application: ex-situ studies. J Alloys Compd 671:486–492

    Article  Google Scholar 

  42. Comsup N, Panpranot J, Praserthdam P (2010) The influence of Si-modified TiO2 on the activity of Ag/TiO2 in CO oxidation. J Ind Eng Chem 16(5):703–707

    Article  CAS  Google Scholar 

  43. Carrettin S, Hao YL, Aguilar-Guerrero V et al (2007) Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation. Chem Eur J 13(27):7771–7779

    Article  CAS  Google Scholar 

  44. Ma Z, Brown S, Overbury SH et al (2007) Au/PO4 3–/TiO2 and PO4 3–/Au/TiO2 catalysts for CO oxidation: effect of synthesis details on catalytic performance. Appl Catal A 327(2):226–237

    Article  CAS  Google Scholar 

  45. Qi CX, Su HJ, Guan RG et al (2012) An Investigation into phosphate-doped Au/alumina for low temperature CO oxidation. J Phys Chem C 116(33):17492–17500

    Article  CAS  Google Scholar 

  46. Panayotov DA, Burrows SP, Yates JT et al (2011) Mechanistic studies of hydrogen dissociation and spillover on Au/TiO2: IR spectroscopy of coadsorbed CO and H-donated electrons. J Phys Chem C 115(45):22400–22408

    Article  CAS  Google Scholar 

  47. Yao J, Zhang YF, Wang YW et al (2017) Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability. RSC Adv 7:24683–24689

    Article  CAS  Google Scholar 

  48. Hu MC, Zhong SH (2006) The structure of TiO2/hydroxyapatite and its photocatalytic performance in degradation of aldehyde. Chin J Catal 27(12):1144–1148

    CAS  Google Scholar 

  49. Lui G, Liao JY, Duan AS et al (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1:12255–12262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21271110 21373120 and 21271107) and MOE Innovation Team of China (IRT13022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoumin Zhang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1946 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Dong, F., Zhong, S. et al. TiO2–Hydroxyapatite Composite as a New Support of Highly Active and Sintering-Resistant Gold Nanocatalysts for Catalytic Oxidation of CO and Photocatalytic Degradation of Methylene Blue. Catal Lett 148, 359–373 (2018). https://doi.org/10.1007/s10562-017-2245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2245-8

Keywords

Navigation