Skip to main content
Log in

Au/TiO2 nanotube catalysts prepared by combining sol–gel method with hydrothermal treatment and their catalytic properties for CO oxidation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new preparation method for Au/TiO2 nanotubes (NTs) by combing sol–gel with hydrothermal treatment technique was developed. The TiO2 NTs calcined at 300 °C were nearly uniform, and the gold particles were distributed homogeneously. The possible formation mechanism was suggested. The 5 % Au/TiO2 NTs calcined at 300 °C had the best catalytic activity for CO oxidation, and their conversion of CO remained at 100 % during 60 h on stream. This preparation method could improve the thermal stability of Au/TiO2 nanotube catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Daniel M-C, Astruc D (2004) Chem Rev 104:293–346

    Article  Google Scholar 

  2. Corma A, Garcia H (2008) Chem Soc Rev 37:2096–2126

    Article  Google Scholar 

  3. Torres C, Campos C, Fierro JLG, Oportus M, Reyes P (2013) Catal Lett 143:763–771

    Article  Google Scholar 

  4. Liu X, Wang A, Zhang T, Mou C-Y (2013) Nano Today 8:403–416

    Article  Google Scholar 

  5. Ayati A, Ahmadpour A, Bamoharram FF, Tanhaei B, Manttari M, Sillanpaa M (2014) Chemosphere. doi:10.1016/j.chemosphere.2014.01.040

  6. Li L, Gao Y, Li H, Zhao Y, Pei Y, Chen Z, Zeng XC (2013) J Am Chem Soc 135(51):19336–19346

    Article  Google Scholar 

  7. Ikegami M, Matsumoto T, Kobayashi Y, Jikihara Y, Nakayama T, Ohashi H, Honma T, Takei T, Haruta M (2013) Appl Catal B Environ 134–135:130–135

    Article  Google Scholar 

  8. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405–408

    Article  Google Scholar 

  9. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113–122

    Article  Google Scholar 

  10. Sakthivel R, Ntho T, Witcomb M, Scurrell MS (2009) Catal Lett 130:341–349

    Article  Google Scholar 

  11. Denkwitz Y, Makosch M, Geserick J, Hörmann U, Selve S, Kaiser U, Hüsing N, Behm RJ (2009) Appl Catal B 91:470–480

    Article  Google Scholar 

  12. Hammer Ni, Mathisen K, Rønning M (2013) Top Catal 56:637–649

    Article  Google Scholar 

  13. Widmannd Behm RJ (2014) Acc Chem Res 47(3):740–749

    Article  Google Scholar 

  14. Roy P, Berger S, Schmuki P (2011) Angew Chem Int Ed 50:2904–2939

    Article  Google Scholar 

  15. Galstyan V, Comini E, Faglia G, Sberveglieri G (2013) Sensors 13:14813–14838

    Article  Google Scholar 

  16. Chien S-H, Liou Y-C, Kuo M-C (2005) Synth Met 152:333–336

    Article  Google Scholar 

  17. Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M (2005) Surf Interface Anal 37:265–269

    Article  Google Scholar 

  18. Ntho TA, Anderson JA, Scurrell MS (2009) J Catal 261:94–100

    Article  Google Scholar 

  19. Jiang J, Gao Q, Chen Z (2008) J Mol Catal A 280:233–239

    Article  Google Scholar 

  20. Tsai J-Y, Chao J-H, Lina C-H (2009) J Mol Catal A 298:115–124

    Article  Google Scholar 

  21. Méndez-Cruz M, Ramírez-Solís J, Zanella R (2011) Catal Today 166:172–179

    Article  Google Scholar 

  22. Zhu B, Guo Q, Huang X, Wang S, Zhang S, Wu S, Huang W (2006) J Mol Catal A 249:211–217

    Article  Google Scholar 

  23. Zhong Z, Lin J, Teh S-P, Teo J, Dautzenberg FM (2007) Adv Funct Mater 17:1402–1408

    Article  Google Scholar 

  24. Perkas N, Zhong Z, Grinblat J, Gedanken A (2008) Catal Lett 120:19–24

    Article  Google Scholar 

  25. Zheng N (2006) Stucky GD. J Am Chem Soc 128:14278–14280

    Article  Google Scholar 

  26. Haruta M (2004) Gold Bull 37(1–2):27–36

    Article  Google Scholar 

  27. Meyer R, Lemire C, Shaikhutdinov SK, Freund H-J (2004) Gold Bull 37(1–2):72–124

    Article  Google Scholar 

  28. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) J Mater Chem 14:3370–3377

    Article  Google Scholar 

  29. Zhang M, Jin Z, Zhang J, Guo X, Yang J, Li W, Wang X, Zhang Z (2004) J Mol Catal A 217:203–210

    Article  Google Scholar 

  30. Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) J Am Ceram Soc 83:2385–2393

    Article  Google Scholar 

  31. Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z (2003) Dalton Trans 20:3898–3901

    Article  Google Scholar 

  32. Chen W, Guo X, Zhang S, Jin Z (2007) J Nanopart Res 9:1173–1180

    Article  Google Scholar 

  33. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Appl Phys Lett 82:281–283

    Article  Google Scholar 

  34. Zanella R, Giorgio S, Shin C-H, Henry CR, Louis C (2004) J Catal 222:357–367

    Article  Google Scholar 

  35. Carrot G, Valmalette JC, Plummer CJG, Scholz SM, Dutta J, Hofmann H, Hilborn JG (1998) Colloid Polym Sci 276:853–859

    Article  Google Scholar 

  36. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Langmuir 14:5396–5401

    Article  Google Scholar 

  37. Liu H, Yang W, Ma Y, Cao Y, Yao J, Zhang J, Hu T (2003) Langmuir 19:3001–3005

    Article  Google Scholar 

  38. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Langmuir 20:2900–2907

    Article  Google Scholar 

  39. Boyen H-G, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmüller S, Hartmann C, Möller M, Schmid G, Garnier MG, Oelhafen P (2002) Science 297:1533–1536

    Article  Google Scholar 

  40. Llorca J, Casanovas A, Domínhuez M, Casanova I, Angurell I, Seco M, Rossell O (2008) J Nanopart Res 10:537–542

    Article  Google Scholar 

  41. Moreau F, Bond GC (2006) Appl Catal A 302:110–117

    Article  Google Scholar 

  42. Comotti M, Li W-C, Spliethoff B, Schüth F (2006) J Am Chem Soc 128:917–924

    Article  Google Scholar 

  43. Li W-C, Comotti M, Schüth F (2006) J Catal 237:190–196

    Article  Google Scholar 

  44. Denkwitz Y, Schumacher B, Kučerová G, Behm RJ (2009) J Catal 267:78–88

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21271110 and 21071086), the Applied Basic Research Programs of Science and Technology Commission Foundation of Tianjin (12JCYBJC13100) and MOE Innovation Team (IRT13022) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoumin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, P., Wang, Y. et al. Au/TiO2 nanotube catalysts prepared by combining sol–gel method with hydrothermal treatment and their catalytic properties for CO oxidation. J Sol-Gel Sci Technol 71, 406–412 (2014). https://doi.org/10.1007/s10971-014-3390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3390-9

Keywords

Navigation