Skip to main content
Log in

Active Ruthenium (0) Nanoparticles Catalyzed Wittig-Type Olefination Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Five different Ru metal precursors were reduced in imidazolium based ionic liquids under hydrogen atmosphere (4 bar) at 50 °C to obtain well-dispersed and stable Ru nanoparticles. Transmission electron microscopy (TEM) analysis confirmed size of well dispersed ionic liquid mediated Ru particles (Ru NPs) of 5 nm (±0.5) in diameter. These ruthenium nanoparticles (in ionic liquids) were used for Wittig type olefination reaction under mild reaction environment (70 °C and 1 h). The corresponding stilbenes were obtained in good yield with low-average selectivity. The proposed methodology is especially efficient for the synthesis of stilbenes as they were synthesized in the absence of any additive (as a hydrogen acceptor). The new catalytic system was also successfully applied for the synthesis of polymethoxylated and polyhydroxylated stilbenes, including resveratrol and DMU-212.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Maryanoff BE, Reitz AB (1989) Chem Rev 89:863–927

    Article  CAS  Google Scholar 

  2. Byrnea PA, Gilheany DG (2013) Chem Soc Rev 42:6670–6696

    Article  Google Scholar 

  3. Eguchi S (2005) ARKIVOC 2:98–119

    Google Scholar 

  4. Marsden SP (2009) Nat Chem 1:685–687

    Article  CAS  Google Scholar 

  5. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4490–4527

    Article  CAS  Google Scholar 

  6. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Angew Chem Int Ed 45:7134–7186

    Article  CAS  Google Scholar 

  7. Nicolaou KC, Härter MW, Gunzner JL, Nadin A (1997) Liebigs Ann/Recueil 7:1283–1301

    Article  Google Scholar 

  8. Huang SL, Omura K, Swern D (1976) J Org Chem 41:3329–3331

    Article  CAS  Google Scholar 

  9. Ireland RE, Norbeck DW (1985) J Org Chem 50:2198–2200

    Article  CAS  Google Scholar 

  10. Zanatta N, Aquino EDC, da Silva FM, Bonacorso HG, Martins MAP (2012) Synthesis 44:3477–3482

    Article  CAS  Google Scholar 

  11. Jeena V, Robinson RS (2014) RSC Adv 4:40720–40739

    Article  CAS  Google Scholar 

  12. Arterburn JB (2001) Tetrahedron 57:9765–9788

    Article  CAS  Google Scholar 

  13. Nixon TD, Whittlesey MK, Williams JMJ (2009) Dalton Trans 5:753–762

    Article  Google Scholar 

  14. Hilt G, Hengst C (2007) J Org Chem 72:7337–7342

    Article  CAS  Google Scholar 

  15. Mattalia JMR, Attolini MM (2013) ARKIVOC 1:101–134

    Google Scholar 

  16. Alonso F, Riente P, Yus M (2011) Acc Chem Res 44:379–391

    Article  CAS  Google Scholar 

  17. Yao C-Z, Li Q-Q, Wang M-M, Ninga X-S, Kang Y-B (2015) Chem Commun 51:7729–7732

    Article  CAS  Google Scholar 

  18. Lee M, Chang S (2000) Tetrahedron Lett 41:7507–7510

    Article  CAS  Google Scholar 

  19. Lee EY, Kim Y, Lee JS, Park J (2009) Eur J Org Chem 18:2943–2946

    Article  Google Scholar 

  20. Carrillo IA, Schmidt LC, Marínab ML, Scaiano JC (2014) Catal Sci Technol 4:435–440

    Article  CAS  Google Scholar 

  21. Ghandi K (2014) Green Sustain Chem 4:44–53

    Article  CAS  Google Scholar 

  22. Ratti R (2014) Adv Chem 2014:1–16

    Article  Google Scholar 

  23. Han D, Row KH (2010) Molecules 15:2405–2426

    Article  CAS  Google Scholar 

  24. Khupse ND, Kumat A (2010) Indian J Chem 49A:635–648

    CAS  Google Scholar 

  25. Zhao H, Malhotra SV (2002) Aldrichimica Acta 35:75–83

    Article  CAS  Google Scholar 

  26. Feldmann C (2013) Z Naturforsch 68b:1059–1089

    Article  Google Scholar 

  27. Zhang B, Yan N (2013) Catalysts 3:543–562

    Article  CAS  Google Scholar 

  28. Prechtl MHG, Campbell PS (2013) Nanotechnol Rev 2:577–597

    Article  CAS  Google Scholar 

  29. Srivastava V (2013) J Chem 125:1207

    CAS  Google Scholar 

  30. Srivastava V (2014) Catal Lett 144:1745–1750

    Article  CAS  Google Scholar 

  31. Prechtl MHG, Scariot M, Scholten JD, Machado G, Teixeira SR, Dupont JJ (2008) Inorg Chem 47:8995–9001

    Article  CAS  Google Scholar 

  32. Dzyuba SV, Kollar KD, Sabnis SS (2009) J Chem Educ 86:856–858

    Article  CAS  Google Scholar 

  33. Min G-H, Yim T, Lee HY, Huh DH, Lee E, Mun J, Oh SM, Kim YG (2006) Bull Korean Chem Soc 27:847–852

    Article  CAS  Google Scholar 

  34. Walton T (1999) Chem Rev 99:2071–2084

    Article  Google Scholar 

  35. Kumar S, Das P (2013) New J Chem 37:2987–2990

    Article  CAS  Google Scholar 

  36. Yinghuai Z, Widjaja E, Sia SLP, Zhan W, Carpenter K, Maguire JA, Hosmane NS, Hawthorne MF (2007) J Am Chem Soc 129:6507–6512

    Article  Google Scholar 

  37. Rossi LM, Dupont J, Machadoa G, Fichtnerb PFP, Radtkec C, Baumvol IJR, Teixeira SR (2004) J Braz Chem Soc 15:904–910

    Article  CAS  Google Scholar 

  38. Widegren JA, Finke RG (2003) J Mol Catal A 198:317–341

    Article  CAS  Google Scholar 

  39. Bernard E, Britz-McKibbin P, Gernigon N (2007) J Chem Educ 84:1159–1161

    Article  CAS  Google Scholar 

  40. Cardile V, Chillemi R, Lombardo L, Sciuto S, Spatafora C, Tringali C (2007) Z Naturforsch Teil C 62:189–195

    CAS  Google Scholar 

  41. Pinto MC, García-Barrado JA, Macías P (2004) Recent Res Devel Biochem 5:281–285

    CAS  Google Scholar 

  42. Zhou B, Liu Z-L (2005) Pure Appl Chem 77:1887–1889

    Article  CAS  Google Scholar 

  43. Russo GL (2007) Biochem Pharmacol 74:533–544

    Article  CAS  Google Scholar 

  44. Rocha-González HI, Ambriz-Tututi M, Granados-Soto V (2008) CNS Neurosci Ther 14:234–247

    Article  Google Scholar 

  45. Tunstall RG, Ruparelia KC, Potter GA, Steward WP, Gescher AJ (2005) Int J Cancer 115:194–201

    Article  Google Scholar 

  46. Ma Z, Molavi O, Haddadi A, Lai R, Gossage RA (2008) Cancer Chemother Pharmacol 63:27–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by DST Fast Track (SB/FT/CS-124/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Srivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V. Active Ruthenium (0) Nanoparticles Catalyzed Wittig-Type Olefination Reaction. Catal Lett 147, 693–703 (2017). https://doi.org/10.1007/s10562-016-1943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1943-y

Keywords

Navigation