Skip to main content
Log in

The Role of Copper Exchanged Phosphomolybdic Acid Catalyst for Knoevenagel Condensation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu exchanged heteropolyacid catalysts were synthesized by ion exchange method and characterized using various physico-chemical techniques such as X-ray diffraction (XRD), FT-IR, Raman, BET surface area, temperature programmed desorption (TPD) of ammonia, 31P NMR, pyridine adsorbed FT-IR spectroscopy, ICP-AES and STEM analysis. XRD diffractograms shows crystallites of heteropolyacid, while FT-IR and Raman spectra indicate that the Keggin ion is retained in the catalysts. 31P NMR, ammonia TPD and pyridine adsorbed FT-IR spectra results suggest that acidity decreases once Cu was incorporated in the heteropolyacid catalyst. For the Knoevenagel condensation reaction, the Cu exchanged phosphomolybdic acid (Cu–PMA) exhibits better catalytic performance than the phosphomolybdic acid (PMA) catalyst and this is related closely with the structural and acidic properties of the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Kozhevnikov IV (1998) Chem Rev 98:171

    Article  CAS  Google Scholar 

  2. Mizuno N, Misono M (1998) Chem Rev 98:199

    Article  CAS  Google Scholar 

  3. Trost BM (1991) Comprehensive organic synthesis. Elsevier, Oxford, p 133

    Google Scholar 

  4. Viswanadham B, Jhansi P, Chary KVR, Friedrich HB, Singh S (2016) Catal Lett 146:364

    Article  CAS  Google Scholar 

  5. Viswanadham B, Kumar VP, Chary KVR (2014) Catal Lett 144:744

    Article  CAS  Google Scholar 

  6. Viswanadham B, Srikanth A, Chary KVR (2014) J Chem Sci 126:445

    Article  CAS  Google Scholar 

  7. Viswanadham B, Srikanth A, Kumar VP, Chary KVR (2015) J Nanosci Nanotech 15:5391

    Article  CAS  Google Scholar 

  8. Alharbi W, Kozhevnikova EF, Kozhevnikov IV (2015) ACS Catal 5:7186

    Article  CAS  Google Scholar 

  9. Alharbi K, Kozhevnikova EF, Kozhevnikov IV (2015) Appl Catal A 504:457

    Article  CAS  Google Scholar 

  10. Abdullah A, Hossein B, Elena K, Ivan K (2015) ACS Catal 5:5512

    Article  Google Scholar 

  11. Walaa A, Esther B, Elena K, Ivan K (2014) J Catal 319:174

    Article  Google Scholar 

  12. Knoevenagel L (1998) Ber 31:258

    Google Scholar 

  13. Enders D, Muller S, Demir AS (1988) Tetrahedron Lett 29:6437

    Article  CAS  Google Scholar 

  14. Reeves RL, Patai S (1996) The chemistry of carbonyl compounds. Interscience Publishers, New York, p 567

    Google Scholar 

  15. Jones G (1967) Org React 15:204

    CAS  Google Scholar 

  16. Attanasi O, Fillippone P, Mei A (1983) Syn Commun 13:1203

    Article  CAS  Google Scholar 

  17. Rao PS, Venkatratnam RV (1991) Tetrahedron Lett 32:5821

    Article  CAS  Google Scholar 

  18. Bao W, Zhang Y, Wang J (1996) Syn Commun 26:3025

    Article  CAS  Google Scholar 

  19. Saravanamurugan S (2006) Appl Catal A 298:8

    Article  CAS  Google Scholar 

  20. Metzger JO (1998) Ang Chem Int Ed 37:2975

    Article  CAS  Google Scholar 

  21. Tanaka K, Toda F (2000) Chem Rev 100:1025

    Article  CAS  Google Scholar 

  22. Pillai MK, Singh S, Jonnalagadda SB (2011) Kinet Catal 52:536

    Article  CAS  Google Scholar 

  23. Fioravanti S, Pellacani L, Tardella PA, Vergari MC (2008) Org Lett 10:1449

    Article  CAS  Google Scholar 

  24. Pillai MK, Singh S, Jonnalagadda SB (2010) Syn Comm 40:3710

    Article  CAS  Google Scholar 

  25. Oskooie HA, Heravi MM, Derikvand F, Khorasani M (2006) Syn Commun 36:2819

    Article  CAS  Google Scholar 

  26. Nakamura E, Mori S (2000) Ang Chem Int Ed 39:3750

    Article  CAS  Google Scholar 

  27. Johnson JS, Evans DA (2000) Acc Chem Res 33:325

    Article  CAS  Google Scholar 

  28. Beletskaya IP, Cheprakov AV (2004) Coord Chem Rev 248:2337

    Article  CAS  Google Scholar 

  29. Schneider EM, Zeltner M, Kranzlin N, Grass RN, Stark WJ (2015) Chem Comm 51:10695

    Article  CAS  Google Scholar 

  30. Margandan B, Pushparaj H, Mani G, Mei MP, Hyun TJ (2011) J Ind Eng Chem 17:628

    Article  Google Scholar 

  31. Barteau KP, Lyons JE, Song IK, Barteau MA (2006) Top Catal 41:55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to the University of KwaZulu-Natal for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaga Viswanadham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanadham, B., Pedada, J., Friedrich, H.B. et al. The Role of Copper Exchanged Phosphomolybdic Acid Catalyst for Knoevenagel Condensation. Catal Lett 146, 1470–1477 (2016). https://doi.org/10.1007/s10562-016-1777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1777-7

Keywords

Navigation