Skip to main content
Log in

Vapor Phase Dehydration of Glycerol to Acrolein Over Phosphotungstic Acid Catalyst Supported on Niobia

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The vapor phase dehydration of glycerol was carried out on niobia-supported phosphotungstic acid (PTA) catalysts. The catalysts were prepared by varying the active component PTA loadings ranging from 10 to 40 wt% on the support. The catalysts were characterized by powder X-ray diffraction, laser Raman spectroscopy, temperature programmed desorption of ammonia, ex-situ FT-IR spectra of adsorbed pyridine, BET surface area and pore size distribution. The XRD results suggest that the active phase of phosphotungstic acid was found to be highly dispersed at lower PTA loadings on the support. The findings of Raman spectra reveals that the catalyst with 30 PTA/Nb-400 clearly exhibit the primary structure of Keggin ion of hetropolyacid on the niobia support. NH3-TPD experiments confirm that the acidity of the catalyst increases with increase of PTA loading and decreases at higher loadings. The nature of acidic sites on the catalyst surface was investigated by the ex-situ pyridine adsorbed FT-IR spectroscopy and the results suggest that the catalyst with 30 PTA/Nb has shown stronger Brønsted acidic sites. Pore size distribution reveals that 30 PTA/Nb-400 exhibited lager average pore diameter than the other loadings. The Nb2O5-supported PTA catalysts have shown remarkable catalytic performance during the dehydration of glycerol to acrolein. The catalytic properties during glycerol dehydration are related to the surface acidic functionality of the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem Int Ed 46:4434

    Article  CAS  Google Scholar 

  2. Katryniok B, Paul S, Capron M, Dumeignil F (2009) Chem Sus Chem 2:719

    Article  CAS  Google Scholar 

  3. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chem Soc Rev 37:527

    Article  Google Scholar 

  4. Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A Gen 145:1

    Article  CAS  Google Scholar 

  5. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Cat Commun 8:1349

    Article  CAS  Google Scholar 

  6. Kim YT, Jung KD, Park ED (2011) Appl Catal B Env 107:177

    Article  CAS  Google Scholar 

  7. Chai SH, Wang HP, Liang Y, Xu BQ (2008) Green Chem 10:1087

    Article  CAS  Google Scholar 

  8. Tao LZ, Chai SH, Zuo Y, Zheng WT, Liang Y, Xu BQ (2010) Catal Today 158:310

    Article  CAS  Google Scholar 

  9. Atia H, Armbruster U, Martin A (2011) Appl Catal A Gen 393:331

    Article  CAS  Google Scholar 

  10. Chai SH, Wang HP, Liang Y, Xu BQ (2007) Green Chem 9:1130

    Article  CAS  Google Scholar 

  11. Kim YT, Jung KD, Park ED (2011) Appl Catal A Gen 393:275

    Article  CAS  Google Scholar 

  12. Kim YT, You SJ, Jung KD, Park ED (2012) Bull Korean Chem Soc 33:2369

    Article  CAS  Google Scholar 

  13. Kim YT, Jung KD, Park ED (2010) Bull Korean Chem Soc 31:3283

    Article  CAS  Google Scholar 

  14. Gu Y, Cui N, Yu Q, Li C, Cui Q (2012) Appl Catal A Gen 429–430:9

    Article  Google Scholar 

  15. Sancho CG, Tost RM, Robles JM, González JS, López AJ, Torres PM (2012) Appl Catal A Gen 433–434:179

    Article  Google Scholar 

  16. Shen L, Yin H, Wang A, Feng Y, Shen Y, Wu Z, Jiang T (2012) Chem Eng J 180:277

    Article  CAS  Google Scholar 

  17. Camila SC, Fernanda TC, Maurício BS, Heloise OP, Heloysa MCA, Artur JSM (2013) Micro Meso Mater 181:74

    Article  Google Scholar 

  18. Gu Y, Liu S, Li C, Cui Q (2013) J Catal 301:93

    Article  CAS  Google Scholar 

  19. Mariano M, Arne A, Elisabetta F, Guido B, Filip L, Wallenberg LR (2013) J Catal 297:93

    Article  Google Scholar 

  20. Kaori O, Shoko I, Toru M, Wataru U (2013) Catal Today 201:7

    Article  Google Scholar 

  21. Tanabe K (1990) Catal Today 8:1

    Article  CAS  Google Scholar 

  22. Ross JRH, Smits RHH, Seshan K (1993) Catal Today 16:503

    Article  CAS  Google Scholar 

  23. Smits RHH, Seshan K, Ross JRH, Kentgens APM (1995) J Phys Chem 99:9169

    Article  CAS  Google Scholar 

  24. Walting TC, Deo G, Seshan K, Wachs IE, Lercher JA (1996) Catal Today 28:139

    Article  Google Scholar 

  25. Chai SH, Wang HP, Liang Y, Xu BQ (2007) J Catal 250:342

    Article  CAS  Google Scholar 

  26. Shiju NR, Brown DR, Wilson K, Rothenberg G (2010) Top Catal 53:1217

    Article  CAS  Google Scholar 

  27. Liu Y, Xu L, Xu B, Li Z, Jia L, Guo W (2009) J Mol Catal A Chem 297:86

    Article  CAS  Google Scholar 

  28. Alsalme AM, Wiper PV, Khimyak YZ, Kozhevnikova EF, Kozhevnikov IV (2010) J Catal 276:181

    Article  CAS  Google Scholar 

  29. Kaba MS, Barteau MA, Lee WY, Song IK (2000) Appl Catal A Gen 194–195:129

    Article  Google Scholar 

  30. Ko EI, Weissman JG (1990) Catal Today 8:27

    Article  CAS  Google Scholar 

  31. Dias JA, Osegovic JP, Drago RS (1999) J Catal 183:83

    Article  CAS  Google Scholar 

  32. Brückman K, Che M, Haber J, Tatibouet JN (1995) Catal Lett 251:225

    Google Scholar 

  33. Chai SH, Wang HP, Yu L, Bo QX (2009) Appl Catal A Gen 353:213

    Article  CAS  Google Scholar 

  34. Rojas E, Perez MOG, Banares MA (2013) Catal Lett 143:31

    Article  CAS  Google Scholar 

  35. Massa M, Andersson A, Finocchio E, Busca G (2013) J Catal 307:170

    Article  CAS  Google Scholar 

  36. Thouvenot R, Fournier M, Franck R, Deltcheff CR (1984) Inorg Chem 23:598

    Article  CAS  Google Scholar 

  37. José EC, Dias A, Dias SCL, Garcia FAC, Macedo JL, Almeida LAS (2010) Micro Meso Mater 132:103

    Article  Google Scholar 

  38. Sun Q, Fu Y, Yang H, Auroux A, She J (2007) J Mol Catal A 275:183

    Article  CAS  Google Scholar 

  39. Atia H, Armbruster U, Martin A (2008) J Catal 258:71

    Article  CAS  Google Scholar 

  40. Katryniok B, Paul S, Capron M, Lancelot C, Baca VB, Rey P, Dumeignil F (2010) Green Chem 12:1922

    Article  CAS  Google Scholar 

  41. Shen L, Feng Y, Yin H, Wang A, Yu L, Jiang T, Shen Y, Wu Z (2011) J Ind Eng Chem 17:484

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors BV and VPK acknowledge CSIR, New Delhi for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komandur V. R. Chary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanadham, B., Pavankumar, V. & Chary, K.V.R. Vapor Phase Dehydration of Glycerol to Acrolein Over Phosphotungstic Acid Catalyst Supported on Niobia. Catal Lett 144, 744–755 (2014). https://doi.org/10.1007/s10562-014-1204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1204-x

Keywords

Navigation