Skip to main content
Log in

Enhanced CO and Soot Oxidation Activity Over Y-Doped Ceria–Zirconia and Ceria–Lanthana Solid Solutions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Y-doped ceria–zirconia (Ce0.8Zr0.12Y0.08O2−δ, CZY) and ceria–lanthana (Ce0.8La0.12Y0.08O2−δ, CLY) ternary oxide solid solutions were synthesized by a facile coprecipitation method. Structural, textural, redox, and morphological properties of the synthesized samples were investigated by means of X-ray diffraction (XRD), inductively coupled plasma-optical emission spectroscopy (ICP–OES), Raman spectroscopy (RS), UV–visible diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction by hydrogen (H2-TPR), high resolution transmission electron microscopy (HRTEM), and Brunauer–Emmett–Teller surface area (BET SA) techniques. The formation of ternary oxide solid solutions was confirmed from XRD, RS, and UV–vis DRS results. ICP–OES analysis confirmed the elemental composition in the ternary oxide solid solutions. HRTEM images revealed irregular morphology of the samples. RS, UV–vis DRS, and XPS results indicated enhanced oxygen vacancies in the Y doped samples. H2-TPR profiles confirmed a facile reduction of CZY and CLY samples at lower temperatures. BET analysis revealed an enhanced surface area for CZY and CLY samples than the respective CZ and CL undoped mixed oxides. All these factors contributed to a better CO and soot oxidation performance of CZY and CLY samples. Particularly, the CLY sample exhibited highest catalytic activity among the various samples investigated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY (2012) Nano Lett 12:5761–5768

    Article  CAS  Google Scholar 

  2. Kurnatowska M, Mista W, Mazur P, Kepinski L (2014) Appl Catal B Environ 148–149:123–135

    Article  Google Scholar 

  3. Ma S, Lu G, Shen Y, Guo Y, Wang Y, Guo Y (2011) Catal Sci Technol 1:669–674

    Article  CAS  Google Scholar 

  4. Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A (2014) ACS Catal 4:172–181

    Article  CAS  Google Scholar 

  5. Paier J, Penschke C, Sauer J (2013) Chem Rev 113:3949–3985

    Article  CAS  Google Scholar 

  6. Chen W-T, Chen K-B, Wang M-F, Weng S-F, Lee C-S, Lin MC (2010) Chem Commun 46:3286–3288

    Article  CAS  Google Scholar 

  7. Reddy BM, Bharali P, Saikia P, Khan A, Loridant S, Muhler M, Grünert W (2007) J Phys Chem C 111:1878–1881

    Article  CAS  Google Scholar 

  8. Reddy BM, Katta L, Thrimurthulu G (2010) Chem Mater 22:467–475

    Article  CAS  Google Scholar 

  9. Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park S-E (2009) J Phys Chem C 113:15882–15890

    Article  CAS  Google Scholar 

  10. Reddy BM, Thrimurthulu G, Katta L (2011) Catal Lett 141:572–581

    Article  CAS  Google Scholar 

  11. Cai W, Zhong Q, Zhang S, Zhang J (2013) RSC Adv 3:7009–7015

    Article  CAS  Google Scholar 

  12. Atribak I, Bueno-Lόpez A, García-García A (2008) Catal Commun 9:250–255

    Article  CAS  Google Scholar 

  13. Fornasiero P, Fonda E, Monte RD, Vlaic G, Kašpar J, Graziani M (1999) J Catal 187:177–185

    Article  CAS  Google Scholar 

  14. Thammachart M, Meeyoo V, Risksomboon T, Osuwan S (2001) Catal Today 68:53–61

    Article  CAS  Google Scholar 

  15. Aneggi E, de Leitenburg C, Trovarelli A (2012) Catal Today 181:108–115

    Article  CAS  Google Scholar 

  16. Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Appl Catal B Environ 101:101–108

    Article  CAS  Google Scholar 

  17. Cai S, Zhang D, Zhang L, Huang L, Li H, Gao R, Shiab L, Zhang J (2014) Catal Sci Technol 4:93–101

    Article  CAS  Google Scholar 

  18. Dasari HP, Ahn K, Park S-Y, Ji H-I, Yoon KJ, Kim B-K, Je H-J, Lee H-W, Lee J-H (2013) Int J Hydrogen Energy 38:6097–6103

    Article  CAS  Google Scholar 

  19. Prasad DH, Park SY, Ji H-I, Kim H-R, Son J-W, Kim B-K, Lee H-W, Lee J-H (2012) J Phys Chem C 116:3467–3476

    Article  CAS  Google Scholar 

  20. Li G, Wang Q, Zhao B, Zhou R (2012) Fuel 92:360–368

    Article  CAS  Google Scholar 

  21. Bharali P, Saikia P, Katta L, Reddy BM (2013) J Ind Eng Chem 19:327–336

    Article  CAS  Google Scholar 

  22. Si R, Zhang Y-W, Wang L-M, Li S-J, Lin B-X, Chu W-S, Wu Z-Y, Yan C- H (2007) J Phys Chem C 111:787–794

    Article  CAS  Google Scholar 

  23. Atribak I, Bueno-López A, García-García A (2009) J Mol Catal A 300:103–110

    Article  CAS  Google Scholar 

  24. He H, Dai HX, Ng LH, Wong KW, Au CT (2002) J Catal 206:1–13

    Article  CAS  Google Scholar 

  25. He H, Dai HX, Wong KW, Au CT (2003) Appl Catal A Gen 251:61–74

    Article  CAS  Google Scholar 

  26. He H, Dai HX, Au CT (2004) Catal Today 90:245–254

    Article  CAS  Google Scholar 

  27. Yao X, Tang C, Ji Z, Dai Y, Cao Y, Gao F, Dong L, Chen Y (2013) Catal Sci Technol 3:688–698

    Article  CAS  Google Scholar 

  28. Harshini D, Lee DH, Jeong J, Kim Y, Nam SW, Ham HC, Han JH, Lim T-H, Yoon CW (2014) Appl Catal B Environ 148–149:415–423

    Article  Google Scholar 

  29. Hernández-Giménez AM, dos Santos Xavier LP, Bueno-López A (2013) Appl Catal A Gen 462–463:100–106

    Article  Google Scholar 

  30. Li L, Chen F, Lu J-Q, Luo M-F (2011) J Phys Chem A 115:7972–7977

    Article  CAS  Google Scholar 

  31. Paunović N, Dohćević-Mitrović Z, Scurtu R, Aškrabić S, Prekajski M, Matović B, Popović ZV (2012) Nanoscale 4:5469–5476

    Article  Google Scholar 

  32. Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) Langmuir 27:3872–3877

    Article  CAS  Google Scholar 

  33. Romeo M, Bak K, Fallah JE, Normand FL, Hilaire L (1993) Surf Interface Anal 20:508–512

    Article  CAS  Google Scholar 

  34. Reddy BM, Katta L, Thrimurthulu G (2001) Catal Today 175:585–592

    Article  Google Scholar 

  35. Qu Z, Yu F, Zhang X, Wang Y, Gao J (2013) Chem Eng J 229:522–532

    Article  CAS  Google Scholar 

  36. Yang D, Wang L, Sun Y, Zhou K (2010) J Phys Chem C 114:8926–8932

    Article  CAS  Google Scholar 

  37. Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  38. Zhang Y, Zhang L, Deng J, Dai H, He H (2009) Inorg Chem 48:2181–2192

    Article  CAS  Google Scholar 

  39. Durgasri DN, Vinodkumar T, Sudarsanam P, Reddy BM (2014) Catal Lett 144:971–979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Department of Science and Technology (DST), New Delhi for financial support of this work (SERB Scheme SB/S1/PC-106/2012). D.D. thanks the Department of Education, Australian Government for providing Endeavour Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaiah, D., Tsuzuki, T., Aniz, C.U. et al. Enhanced CO and Soot Oxidation Activity Over Y-Doped Ceria–Zirconia and Ceria–Lanthana Solid Solutions. Catal Lett 145, 1206–1216 (2015). https://doi.org/10.1007/s10562-015-1507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1507-6

Keywords

Navigation