Skip to main content
Log in

Perovskite-Based Lean-Burn NO x Trap Catalysts Without Using Platinum Group Metals: K/LaCoO3/Ce1−x Zr x O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Ce1−x Zr x O2 (x = 0, 0.1, 0.2, 0.3) solid solution supported lean-burn NO x trap (LNT) catalysts K/LaCoO3/Ce1−x Zr x O2 were prepared by successive impregnation. After sulfation the supported perovsikte LaCoO3 was well maintained; reducing treatment partly destroyed the perovsikte, but it can be well recovered by re-oxidation treatment. Based on NO x storage and sulfur-resisting performance of the catalysts, the optimal atomic ratio of Zr in Ce1−x Zr x O2 support is x = 0.2. The catalyst K/LaCoO3/Ce0.8Zr0.2O2 exhibits much better NO x storage capacity than the Pt-based catalyst Pt/K/Ce0.8Zr0.2O2, which is highly related to its stronger capability for NO to NO2 oxidation. During NO x storage much larger amounts of nitrate and nitrite species were identified by in situ DRIFTS over perovskite-based catalysts than over Pt-based one. The H2-TPR results reveal that after deep sulfation little sulfur species were deposited on the catalyst K/LaCoO3/Ce1−x Zr x O2, showing strong sulfur-resisting ability. As a result, it is thought that the full replacement of Pt by perovskite LaCoO3 in the corresponding LNT catalysts is feasible.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roy S, Baiker A (2009) Chem Rev 109:4054

    Article  CAS  Google Scholar 

  2. He JJ, Meng M, Zou ZQ, He XX (2010) Catal Lett 136:234

    Article  CAS  Google Scholar 

  3. Medhekar V, Balakotaiah V, Harold MP (2007) Catal Today 121:236

    Article  Google Scholar 

  4. Nova I, Lietti L, Forzatti P (2008) Catal Today 136:128

    Article  CAS  Google Scholar 

  5. Colonna S, De Rossi S, Faticanti M, Pettiti I, Porta P (2002) J Mol Catal A187:269

    Article  Google Scholar 

  6. Doggali P, Kusaba S, Teraoka Y, Chankapure P, Rayalu S, Labhsetwar N (2010) Catal Commun 11:665

    Article  CAS  Google Scholar 

  7. Alifanti M, Florea M, Pârvulescu VI (2007) Appl Catal B Environ 70:400

    Article  CAS  Google Scholar 

  8. Liu J, Zhao Z, Lan J, Xu CM, Duan AJ, Jiang GY, Wang XP, He H (2009) J Phys Chem C 113:17114

    Article  CAS  Google Scholar 

  9. Taniguchi M, Tanaka H, Uenishi M, Tan I, Nishihata Y, Mizuki J, Suzuki H, Narita K, Hirai A, Kimura M (2007) Top Catal. 42–43:367

  10. Zhang RD, Alamdari H, Kaliaguine S (2008) Appl Catal A Gen 340:140

    Article  CAS  Google Scholar 

  11. Peter SD, Garbowski E, Perrichon V, Primet M (2000) Catal Lett 70:27

    Article  CAS  Google Scholar 

  12. Kim CH, Qi GS, Dahlberg K, Li W (2010) Science 327:1624

    Article  CAS  Google Scholar 

  13. Hadi A, Yaacob II (2004) Catal Today 96:165

    Article  CAS  Google Scholar 

  14. Trovarelli A, De Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353

    Article  CAS  Google Scholar 

  15. Terribile D, Trovarelli A, Llorca J, De Leitenburg C, Dolcetti G (1998) J Catal 178:299

    Article  CAS  Google Scholar 

  16. Zhu HO, Kim JR, Ihm SK (2009) Appl Catal B Environ 86:87

    Article  CAS  Google Scholar 

  17. Zou ZQ, Meng M, Zhou XY, Li XG, Zha YQ (2009) Catal Lett 128:475

    Article  CAS  Google Scholar 

  18. Liu Y, Meng M, Li XG, Guo LH, Zha YQ (2008) Chem Eng Res Des 86:932

    Article  CAS  Google Scholar 

  19. Liu Y, Meng M, Zou ZQ, Li XG, Zha YQ (2008) Catal Commun 10:173

    Article  CAS  Google Scholar 

  20. Forzatti P, Castoldi L, Nova I, Lietti L, Tronconi E (2006) Catal Today 117:316

    Article  CAS  Google Scholar 

  21. Zou ZQ, Meng M, He JJ (2010) Mater Chem Phys 124:987

    Article  CAS  Google Scholar 

  22. Haas O, Struis RPWJ, McBreen JM (2003) J Solid State Chem 177:1000

    Article  Google Scholar 

  23. Simonot L, Garin F, Maire G (1997) Appl Catal B Environ 11:181

    Article  CAS  Google Scholar 

  24. Dhainaut F, Pietrzyk S, Granger P (2008) J Catal 258:296

    Article  CAS  Google Scholar 

  25. Hwang HJ, Awano M (2001) J Euro Ceram Soc 21:2103

    Article  CAS  Google Scholar 

  26. Yang M, Zhong Y, Liu ZK (2007) Solid State Ionics 178:1027

    Article  CAS  Google Scholar 

  27. Zuev AY, Vylkov AI, Petrov AN, Tsvetkov DS (2008) Solid State Ionics 179:1876

    Article  CAS  Google Scholar 

  28. Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G (2004) J Catal 222:377

    Article  CAS  Google Scholar 

  29. Engelmann-Pirez M, Granger P, Leclercq G (2005) Catal Today 107:315

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 20876110, 21076146), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090032110013) and the Program of New Century Excellent Talents in University of China (No. NCET-07-0599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., He, J. & Meng, M. Perovskite-Based Lean-Burn NO x Trap Catalysts Without Using Platinum Group Metals: K/LaCoO3/Ce1−x Zr x O2 . Catal Lett 141, 1364–1370 (2011). https://doi.org/10.1007/s10562-011-0664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0664-5

Keywords

Navigation