Skip to main content
Log in

Organometallic Models for Metal Surface Reactions: Chain Growth Involving Electrophilic Methylidynes in the Fischer–Tropsch Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new mechanism involving metal-bound surface electrophilic methylidynes is proposed for chain growth in the Fischer–Tropsch reaction to give 1-alkenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Presented at the 13th international symposium on the relations between homogeneous and heterogeneous catalysis, Berkeley, CA, USA, July 17, 2007

  2. Chiusoli GP, Maitlis PM (eds) (2006) Metal catalysis in industrial organic processes. RSC Publications, Cambridge

    Google Scholar 

  3. Turner ML, Marsih N, Mann BE, Quyoum R, Long HC, Maitlis PM (2002) J Am Chem Soc 124:10456 and references therein;

    Article  CAS  Google Scholar 

  4. Turner ML, Long HC, Shenton A, Byers PK, Maitlis PM (1995) Chem Eur J 1:549

    Article  CAS  Google Scholar 

  5. Ma F, Sunley GJ, Saez IM, Maitlis PM (1990) J Chem Soc Chem Commun 1279

  6. Brady RC, Pettit R (1980) J Am Chem Soc 102:6181

    Article  CAS  Google Scholar 

  7. Brady RC, Pettit R (1981) J Am Chem Soc 103:1287

    Article  CAS  Google Scholar 

  8. Biloen P, Sachtler WMH (1981) Adv Catal 30:165

    Article  CAS  Google Scholar 

  9. Zheng C, Apeloig Y, Hoffman R (1988) J Am Chem Soc 110:749

    Article  CAS  Google Scholar 

  10. Mims CA, McCandlish LE, Melchior MT (1988) Catal Lett 1:121

    Article  CAS  Google Scholar 

  11. Krishna KR, Bell AT (1992) Catal Lett 14:305

    Article  CAS  Google Scholar 

  12. Barteau MA, Broughton JQ, Menzel D (1984) Appl Surf Sci 19:92

    Article  CAS  Google Scholar 

  13. Wu M-C, Goodman DW (1994) J Am Chem Soc 116:1364

    Article  CAS  Google Scholar 

  14. Zhou X-L, Liu Z-M, Kiss J, Sloan DW, White JM (1995) J Am Chem Soc 117:3565

    Article  CAS  Google Scholar 

  15. Ciobica IM, Kramer GJ, Ge Q, Neurock M, van Santen RA (2002) J Catal 212:136

    Article  CAS  Google Scholar 

  16. Liu Z-P, Hu P (2002) J Am Chem Soc 124:11568

    Article  CAS  Google Scholar 

  17. Pedersen A, Tilset M (1993) Organometallics 12:56

    Article  CAS  Google Scholar 

  18. Zhu D, Lindeman SV, Kochi JK (1999) Organometallics 18:2241

    Article  CAS  Google Scholar 

  19. Hahn C (2004) Chem Eur J 10:5888

    Article  CAS  Google Scholar 

  20. Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ (2004) J Am Chem Soc 126:2847

    Article  CAS  Google Scholar 

  21. Saez IM, Meanwell NJ, Nutton A, Isobe K, Vazquez de Miguel A, Bruce DW, Okeya S, Andrews DG, Ashton PR, Johnstone IR, Maitlis PM (1986) J Chem Soc Dalton Trans 1565

  22. Saez IM, Andrews DG, Maitlis PM (1988) Polyhedron 7:827

    Article  CAS  Google Scholar 

  23. Isobe K, Andrews DG, Mann BE, Maitlis PM (1981) JCS Chem Comm 809

  24. Dyke AF, Guerchais JE, Knox SAR, Roue J, Short RL, Taylor GE, Woodward P (1981) JCS Chem Commun 537

  25. Casey CP, Fagan PJ, Miles WH (1982) J Am Chem Soc 104:1134

    Article  CAS  Google Scholar 

  26. Casey CP, Austin EA, Rheingold AL (1987) Organometallics 6:2157

    Article  CAS  Google Scholar 

  27. Knox SAR (1990) J Organometal Chem 400:255

    Article  CAS  Google Scholar 

  28. Ritleng V, Chetcuti MJ (2007) Chem Rev 107:797

    Article  CAS  Google Scholar 

  29. Vannice MA, Garten RL (1979) J Catal 56:236

    Article  CAS  Google Scholar 

  30. Vannice MA, Garten RL (1978) US Patent 4116994

  31. Vannice MA (1982) J Catal 74:199

    Article  CAS  Google Scholar 

  32. Watson PR, Somorjai GA (1981) J Catal 72:347

    Article  CAS  Google Scholar 

  33. Watson PR, Somorjai GA (1982) J Catal 74:282

    Article  CAS  Google Scholar 

  34. Boffa A, Lin C, Bell AT, Somorjai GA (1994) J Catal 149:149

    Article  CAS  Google Scholar 

  35. Weng-Sieh Z, Gronsky R, Engelke F, King TS, Pruski M (1994) J Catal 150:400

    Article  Google Scholar 

  36. Bell AT (1995) J Mol Catal 100:1

    Article  CAS  Google Scholar 

  37. Kiss J, Barthos R, Solymosi F (2001) Top Catal 14:145

    Article  Google Scholar 

Download references

Acknowledgements

We thank Franco Fanizzi, Tony Haynes, Graham Hutchings, Peijun Hu, and Luciana Maresca for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Maitlis.

Appendix

Appendix

A referee has asked us to propose some experiments to support these ideas. Since the initial CO cleavage and the subsequent C–H formation steps in the Fischer–Tropsch process are probably fast on the catalytically active metal surfaces, the C–C coupling is likely to be the slowest (i.e. rate-determining) step of the overall process. One approach would thus be to increase the rate by increasing the electrophilicity of the methylidyne. This could be achievable either electrochemically or by adding a very strong Lewis acid. Komaya, Boffa, Bell and their coworkers have shown that the rate of methane formation in CO hydrogenation over Rh decorated by various metal oxides is dependent on the Lewis acidity of the oxide [3436]. Given the very sensitive analytical techniques now available it should be relatively straightforward to extend this experiment to ascertain how the degree of chain lengthening (i.e. the rate of formation of products C>1) is affected by different Lewis acids on a number of metals with Fischer–Tropsch activity, and comparing them to the rates of methane production.

It is also interesting that addition of potassium to a Rh(111) surface stabilised CH2(ad) caused it to dimerise to ethylene [37].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitlis, P.M., Zanotti, V. Organometallic Models for Metal Surface Reactions: Chain Growth Involving Electrophilic Methylidynes in the Fischer–Tropsch Reaction. Catal Lett 122, 80–83 (2008). https://doi.org/10.1007/s10562-007-9359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9359-3

Keywords

Navigation