Skip to main content
Log in

Transmetalation: a fundamental organometallic reaction critical to synthesis and catalysis

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

A number of critical reactions form the foundation of organometallic chemistry. One such fundamental reaction of organometallic chemistry is transmetalation, a general term that in its modern meaning describes the transfer of carbon ligands (i.e., alkyl, aryl, alkynyl, allyl, etc.) from one metal to another. Transmetalation has a very long history and the reaction dates back to the early beginnings of organometallic chemistry with the work of the English chemist Edward Frankland (1825–1899) in the 1860s. Since its introduction, transmetalation has found significant utility in synthetic chemistry, allowing the generation of a wide variety of organometallic compounds of both main group and transition metal elements, and has been identified as a critical step in many synthetic organic reactions catalyzed by transition metal complexes. Regardless of the long history of this reaction and its significant applications, transmetalation is not covered in the same depth as other fundamental reactions in organometallic chemistry and is rarely given serious treatment in organometallic textbooks. Thus, the aim of the current work is to supplement current textbooks by presenting the basics of what is currently known about the details and parameters of this important reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamamoto A (1986) Organotransition metal chemistry: fundamental concepts and applications. Wiley, New York, pp 222–272

    Google Scholar 

  2. Collman JP, Hegedus LS, Norton JR, Finke RG (1987) Principles and applications of organotransition metal chemistry. University Science, Mill Valley, CA, pp 279–399

    Google Scholar 

  3. Atwood JD (1997) Inorganic and organometallic reaction mechanisms, 2nd edn. Wiley-VCH, New York, pp 149–188

    Google Scholar 

  4. Jordan RB (1998) Reaction mechanisms of inorganic and organometallic systems, 2nd edn. Oxford University Press, New York, pp 134–187

    Google Scholar 

  5. Elschenbroich C (2006) Organometallics. Third, completely revised and extended edition. Wiley-VCH, Weinheim, pp 286–393

  6. Spessard GO, Miessler GL (2010) Organometallic chemistry, 2nd edn. Oxford University Press, New York, pp 176–266

    Google Scholar 

  7. Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Wiley, Hoboken, pp 163–203

    Book  Google Scholar 

  8. Bochmann M (2015) Organometallics and catalysis: an introduction. Oxford University Press, Oxford, pp 268–271, 305–308.

  9. Carr DB, Yoshifuji M, Shoer LI, Gell KI, Schwartz J (1977) Transmetalation: organic synthesis via transfer of organic groups from one metal to another. Ann N Y Acad Sci 295:127–134

    Article  CAS  Google Scholar 

  10. Osakada K (2003) Transmetalation. In: Kurosawa H, Yamamoto A (eds) Fundamentals of molecular catalysis. Current methods of inorganic chemistry, Vol. 3. Elsevier, Amsterdam, pp 233–291

  11. Collman JP, Hegedus LS, Norton JR, Finke RG (1987b) Principles and applications of organotransition metal chemistry. University Science, Mill Valley, CA, pp 704–720

    Google Scholar 

  12. Crabtree RH (2014b) The organometallic chemistry of the transition metals, 6th edn. Wiley, Hoboken, pp 77–78

    Book  Google Scholar 

  13. Spessard GO, Miessler GL (2010b) Organometallic chemistry, 2nd edn. Oxford University Press, New York, pp 585–586

    Google Scholar 

  14. Schick JW, Hartough HD (1948) Metalation studies in the thiophene series. II. Transmetalation of the alkylthiophenes. J Am Chem Soc 70:1645.

  15. Davies G, El-Sayed MA, El-Toukhyt A (1992) Transmetallation and its applications. Chem Soc Rev 21:101–104

    Article  CAS  Google Scholar 

  16. Yamamoto A (1986) Organotransition metal chemistry: fundamental concepts and applications. Wiley, New York, p 375

    Google Scholar 

  17. Thayer JS (1969) Historical origins of organometallic chemistry. Part II, Edward Frankland and diethylzinc. J Chem Educ 46:764–765

    Article  CAS  Google Scholar 

  18. Thayer JS (1975) Organometallic chemistry: a historical perspective. Adv Organomet Chem 13:1–45

    Article  CAS  Google Scholar 

  19. Frankland E (1849) Ueber die Isolirung der organischen Radicale. Ann Chem Pharm 71:171–213

    Article  Google Scholar 

  20. Frankland E (1850) On the isolation of the organic radicals. Q J Chem Soc 2:263–296

    Article  Google Scholar 

  21. Frankland E (1849) Notiz über eine neue Reihe organischer Körper, welche Metalle, Phosphor u. s. w. enthalten. Justus Liebigs Ann Chem 71:213–216

  22. Frankland E (1850) On a new series of organic bodies containing metals and phosphorus. Q J Chem Soc 2:297–299

    Article  Google Scholar 

  23. Frankland E (1852) On a new series of organic bodies containing metals. Philos Trans R Soc Lond 142:417–444

    Google Scholar 

  24. Frankland E (1861) On organo-metallic bodies. A discourse delivered to the members of the Chemical Society of London. Q J Chem Soc 13:177–235

    Article  Google Scholar 

  25. Frankland E, Duppa BF (1864) On a new reaction for the production of the zinc-compounds of the alcohol-radicles. J Chem Soc 17:29–36

    Article  Google Scholar 

  26. Frankland E (1864) On recent chemical researches in the Royal Institution. Not Proc R Inst 4:309–315

    Google Scholar 

  27. Espinet P, Echavarren AM (2004) The mechanisms of the Stille reaction. Angew Chem Int Ed 43:4704–4734

    CAS  Google Scholar 

  28. Phapale VB, Cárdenas DJ (2009) Nickel-catalysed Negishi cross-coupling reactions: scope and mechanisms. Chem Soc Rev 38:1598–1607

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki A (2011) Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds (Nobel Lecture). Angew Chem Int Ed 50:6723–6737

    Google Scholar 

  30. Heravi MM, Hajiabbasi P (2012) Recent advances in Kumada-Tamao-Corriu cross-coupling reaction catalyzed by different ligands. Monatsh Chem 143:1575–1592

    Article  CAS  Google Scholar 

  31. Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P (2015) The Stille reaction, 38 years later. ACS Catal 5:3040–3053

    Article  CAS  Google Scholar 

  32. Haas D, Hammann JM, Greiner R, Knochel P (2016) Recent developments in Negishi cross-coupling reactions. ACS Catal. 6:1540–1552

    Article  CAS  Google Scholar 

  33. Negishi E (1980) Organometallics in organic synthesis. Vol. I: General discussions and organometallics of main group metals in organic synthesis. Wiley, New York, pp 54–57

  34. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins College, New York, pp 565–567

  35. Taube H, Myers H, Rich RL (1953) Observations on the mechanism of electron transfer in solution. J Am Chem Soc 75:4118–4119

    Article  CAS  Google Scholar 

  36. Taube H, Myers H (1954) Evidence for a bridged activated complex for electron transfer reactions. J Am Chem Soc 76:2103–2111

    Article  CAS  Google Scholar 

  37. Garcia ME, Ramos A, Ruiz MA, Lanfranchi M, Marchio L (2007) Structure and bonding in the unsaturated hydride- and hydrocarbyl-bridged complexes [Mo25-C5H5)2(µ-X)(µ-PCy2)(CO)2] (X = H, CH3, CH2Ph, Ph). Evidence for the presence of α-agostic and π-bonding interactions. Organometallics 26:6197–6212

    Article  CAS  Google Scholar 

  38. da Silva MAVR (1984) Thermochemistry and its applications to chemical and biochemical systems. Reidel, Dordrecht, p 360.

  39. Elschenbroich C (2006) Organometallics. Third, completely revised and extended edition. Wiley-VCH, Weinheim, p 28

    Google Scholar 

  40. Simões JAM (2018) Organometallic thermochemistry data. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. https://doi.org/10.18434/T4D303 (accessed May 8, 2020)

  41. Jover J, Bosque R, Simões JAM, Sales J (2008) Estimation of enthalpies of formation of organometallic compounds from their molecular structures. J Organomet Chem 693:1261–1268

    Article  CAS  Google Scholar 

  42. Mehrotra RC, Singh A (2000) Organometallic chemistry: a unified approach, 2nd edn. New Age, New Delhi, p 36

  43. Crabtree RH (2014) The organometallic chemistry of the transition metals, 6th edn. Hoboken, Wiley, p 70

    Book  Google Scholar 

  44. Stollenz M, Meyer F (2012) Mesitylcopper: a powerful tool in synthetic chemistry. Organometallics 31:7708–7727

    Article  CAS  Google Scholar 

  45. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry. Principles of structure and reactivity, 4th edn. HarperCollins College, New York, pp. 344–355

  46. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  47. Pearson RG (1968) Hard and soft acids and bases, HSAB, part I: fundamental principles. J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  48. Pearson RG (1968) Hard and soft acids and bases, HSAB, part II: underlying theories. J Chem Educ 45:643–648

    Article  CAS  Google Scholar 

  49. Davies RP (2011) The structures of lithium and magnesium organocuprates and related species. Coord Chem Rev 255:1226–1251

    Article  CAS  Google Scholar 

  50. Lipshutz BH, Wilhelm RS, Kozlowski JA (1984) The chemistry of higher order organocuprates. Tetrahedron 40:5005–5038

  51. Surry DS, Spring DR (2006) The oxidation of organocuprates—an offbeat strategy for synthesis. Chem Soc Rev 35:218–225

    Article  CAS  PubMed  Google Scholar 

  52. Gilman H, Jones RG, Woods LA (1952) The preparation of methylcopper and some observations on the decomposition of organocopper compounds. J Org Chem 17:1630–1634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth C. Rasmussen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmussen, S.C. Transmetalation: a fundamental organometallic reaction critical to synthesis and catalysis. ChemTexts 7, 1 (2021). https://doi.org/10.1007/s40828-020-00124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-00124-9

Keywords

Navigation