Skip to main content
Log in

Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rubidium promoted iron Fischer–Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. Mössbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was χ-Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, ɛ′-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ronald D, Bell AT (1986) J Catal 97:121

    Article  Google Scholar 

  2. Ngantsoue-Hoc W, Zhang Y, O’Brien RJ, Luo M, Davis BH (2002) Appl Catal 236:77

    Article  CAS  Google Scholar 

  3. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  4. Li S, Ding W, Meitzner GD, Iglesia E (2002) J Phys Chem B 106:85

    Article  CAS  Google Scholar 

  5. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202

    Article  CAS  Google Scholar 

  6. Luo M, O’Brien RJ, Bao S, Davis BH (2003) Appl Catal A Gen 239:111

    Article  CAS  Google Scholar 

  7. Arakawa H, Bell AT (1983) Ind Eng Chem Res Process Des Dev 22:97

    Article  CAS  Google Scholar 

  8. Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36

    Article  CAS  Google Scholar 

  9. Bukur DB, Mukesh DS, Patal A (1990) Ind Eng Chem Res 29:194

    Article  CAS  Google Scholar 

  10. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  11. Miller DG, Moskovits M (1988) J Phys Chem 92:6081

    Article  CAS  Google Scholar 

  12. Doskocil EJ, Bordawekar SV, Davis RJ (1997) J Catal 169:327

    Article  CAS  Google Scholar 

  13. Tsuchiya S, Takase S, Imamura H (1984) Chem Lett 5:661

    Article  Google Scholar 

  14. Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases. Kodansha, Tokyo

    Google Scholar 

  15. Ressler T (1997) WinXAS97 version 1.0

  16. Niemantsverdriet JW, van der Krann AM, van Dijk WL, van der Baan HS (1980) J Phys Chem 84:3363

    Article  CAS  Google Scholar 

  17. Butt JB (1990) Catal Lett 7:61

    Article  CAS  Google Scholar 

  18. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis—science and technology. Springer-Verlag, New York, p 59

    Google Scholar 

  19. Huang C-S, Ganguly B, Huffman GP, Huggins FE, Davis BH (1993) Fuel Sci Technol Int 11(9):1289

    CAS  Google Scholar 

  20. Hofer LJE (1956) In: Emmett PH (ed) Catalysis, vol IV. Reinhold Publishing, New York, pp 373–442

    Google Scholar 

  21. Zarochak MF, McDonald MA (1986) Slurry-phase Fischer–Tropsch synthesis, CONF-86/288-1, Proceedings of indirect liquefaction contractor’s conference, Monroeville, PA, USA, December 2–4, 1986

  22. Davis BH (1999) Technology development for iron Fischer–Tropsch catalysis, US DOE Final Technical Report, Contract # DE-AC22-94PC94055-13

  23. Sarkar A, Seth D, dozier AK, Neathery JK, Hamdeh HH, Davis BH (accepted, in press) Catal Lett

  24. Sarkar A, Dozier AK, Graham UM, Thomas G, O’Brien RJ, Davis BH (2007) Appl Catal A Gen 326:55

    Article  CAS  Google Scholar 

  25. Rao KRPM, Huggins FE, Huffman GP, Gormley RJ, O’Brien RJ, Davis BH (1996) Energy Fuels 10:546

    Article  CAS  Google Scholar 

  26. Rao KRPM, Huggins FE, Huffman GP, O’Brien RJ, Gormley RJ, Davis BH (1995) Prepr Pap ACS Div Fuel Chem 40(1):153

    CAS  Google Scholar 

  27. Li S, Meitzner GD, Iglesia E (2001) J Phys Chem B 105:5743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by US DOE contract number DE-FC26-03NT41965 and the Commonwealth of Kentucky. The EXAFS/XANES experiments are carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the US DOE, Divisions of Materials Science and Chemical Sciences. Special thanks to Dr. Syed Khalid (Beamline X18b, NSLS, Brookhaven) and Dr. Patricia M. Patterson, Center for Applied Energy Research, U of Kentucky, Lexington, KY for help with XAFS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Jacobs, G., Ji, Y. et al. Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst. Catal Lett 121, 1–11 (2008). https://doi.org/10.1007/s10562-007-9288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9288-1

Keywords

Navigation