Skip to main content
Log in

Fischer–Tropsch Synthesis: Morphology, Phase Transformation and Particle Size Growth of Nano-scale Particles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An unpromoted ultrafine iron nano-particle catalyst was used for Fischer–Tropsch synthesis (FTS) in a CSTR at 270 °C, 175 psig, H2/CO = 0.7, and a syngas space velocity of 3.0 sl/h/g Fe. Prior to FTS, the catalyst was activated in CO for 24 h which converted the initial hematite into a mixture of 85% χ-Fe5C2 and 15% magnetite, as found by Mössbauer measurement. The activated catalyst results in an initial high conversion (ca. 85%) of CO and H2; however the conversions decreased to ca. 10% over about 400 h of synthesis time and after that remained nearly constant up to 600 h. Mössbauer and EELS measurement revealed that the catalyst deactivation was accompanied by gradual in situ re-oxidation of the catalyst from initial nearly pure χ-Fe5C2 phase to pure magnetite after 400 h of synthesis time. Experimental data indicates that the nucleation for carbide/oxide transformation may initiates at the center of the particle by water produced during FTS. Small amount of ɛ′-Fe2.2C phase was detected in some catalyst samples collected after 480 h of FTS which are believed to be generated by syngas during FTS. Particle size distribution (PSD) measurements indicate nano-scale growth of individual catalyst particle. Statistical average diameters were found to increase by a factor of 4 over 600 h of FTS. Large particles with the largest dimension larger than 150 nm were also observed. Chemical compositions of the larger particles were always found to be pure single crystal magnetite as revealed by EELS analysis. Small number of ultrafine carbide particles was identified in the catalyst samples collected during later period of FTS. The results suggest that carbide/oxide transformation and nano-scale growth of particles continues either in succession or at least simultaneously; but definitely not in the reverse order (in that case some larger carbide particles would have observed). EELS-STEM measurement reveals amorphous carbon rim of thickness 3–5 nm around some particles after activation and during FTS. Well ordered graphitic carbon layers on larger single crystal magnetite particles were found by EELS-STEM measurement. However the maximum thickness of the carbon (amorphous or graphitic) rim does not grow above 10 nm suggesting that the growths of particles are not due to carbon deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wender I (1996) Fuel Proce Technol 48:189

    Article  CAS  Google Scholar 

  2. Steynberg AP (2004) In: Steynberg AP, Dry ME (eds) Fischer–Tropsch technology, studies in surface science and catalysis, vol 152. Elsevier, USA, p 8

    Google Scholar 

  3. Sarkar A, Neathery JK, Davis BH (2007) Separation of Fischer–Tropsch wax products from ultrafine iron catalyst particles, US DOE Final Technical Report, Contract # DE-FC26-03NT41965

  4. Li S, Ding W, Meitzner GD, Iglesia E (2002) J Phys Chem B 106:85

    Article  CAS  Google Scholar 

  5. Huang C-S, Ganguly B, Huffman GP, Huggins FE, Davis BH (1993) Fuel Sci Technol Int 11(9):1289

    CAS  Google Scholar 

  6. Zhao R, Goodwin JG, Jothimurugesan K, Gangwal SK, Spivey JJ (2001) Ind Eng Chem Res 40:1320

    Article  CAS  Google Scholar 

  7. Shroff MD, Kalakkad DS, Coulter KE, Köhler SD, Harrington MS, Jackson NB, Sault AG, Datye AK (1995) J Catal 156:185

    Article  CAS  Google Scholar 

  8. Pham HN, Datye AK (2000) Catal Today 58:233

    Article  CAS  Google Scholar 

  9. Srinivasan R, Xu L, Spicer RL, Tungate FL, Davis BH (1996) Fuel Sci Technol Int 14(10):1337

    CAS  Google Scholar 

  10. Davis BH (1999) Technology development for iron Fischer–Tropsch Catalysis, US DOE Final Technical Report, Contract # DE-AC22-94PC94055-13

  11. Kuo JCW, Sanzo FPD, Garwood WE, Gupte KM, Lang CK, Leib TM, Malladi M, Molina T, Nace DM, Smith J, Tarallo N, Kirk JF (1983) Slurry Fischer–Tropsch/mobil two-stage process of converting syngas to high octane gasoline, US DOE Final Technical Report, Contract # AC22-80PC30022

  12. Bukur DB, Ma WP, Vazquez VC, Nowicki L, Adeyiga AA (2004) Ind Eng Chem Res 43:1359

    Article  CAS  Google Scholar 

  13. O’Brien RJ, Xu L, Bao S, Raje A, Davis BH (2000) Appl Catal A 196:173

    Article  CAS  Google Scholar 

  14. Kölbel H, Ralek M (1980) Catal Rev-Sci Eng 21:225

    Article  Google Scholar 

  15. Niemantsverdriet JW, van der Krann AM, van Dijk WL, van der Baan HS (1980) J Phys Chem 84:3363

    Article  CAS  Google Scholar 

  16. Butt JB (1990) Catal Lett 7:61

    Article  CAS  Google Scholar 

  17. Sarkar A, Dozier AK, Graham UM, Thomas G, O’Brien RJ, Davis BH (2007) Appl Catal A: Gen 326:55

    Article  CAS  Google Scholar 

  18. Rao KRPM, Huggins FE, Huffman GP, Gormley RJ, O’Brien RJ, Davis BH (1996) Energy Fuels 10:546

    Article  CAS  Google Scholar 

  19. Rao KRPM, Huggins FE, Huffman GP, O’Brien RJ, Gormley RJ, Davis BH (1995) ACS Division Fuel Chem 40(1):153 (Preprints of Papers)

    Google Scholar 

  20. Jin Y, Xu H, Datye AK (2006) Microsc Microanal 12:124

    Article  CAS  Google Scholar 

  21. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA, p 118, 182

  22. Morozova OS, Maksimov YV, Shashkin DP, Shirjaev PA, Matveyev VV, Zhorin VA, Krylov OV (1991) Appl Catal 78:227

    Article  CAS  Google Scholar 

  23. PDF # 19-0629, JCPDS—International Center for Diffraction Data (2003)

  24. PDF # 36-1248, JCPDS—International Center for Diffraction Data (2003)

  25. Colliex C, Manoubi T, Ortiz C (1991) Phys Rev B 44(20):402

    Article  Google Scholar 

  26. Allen T (1997) Particle size measurement, vol 1. Chapman and Hall, London, p 44

    Google Scholar 

  27. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis-science and technology. Springer-Verlag, New York, p 59

    Google Scholar 

  28. Emmett PH (ed) (1956) Crystallite phase and their relationship to Fischer–Tropsch catalysis. Reinhold, New York, p 407

    Google Scholar 

  29. Zarochak MF, McDonald MA (1986) Slurry-phase Fischer–Tropsch synthesis, CONF-86/288-1, Proceedings of Indirect Liquefaction Contractor’s Conference, December 2–4, 1986 at Monroeville, PA, USA

  30. Raupp GB, Delgass WN (1979) J Catal 58:361

    Article  CAS  Google Scholar 

  31. Li S, O’Brien RJ, Meitzner GD, Hamdeh H, Davis BH, Iglesia E (2001) Appl Catal A 219:215

    Article  CAS  Google Scholar 

  32. Li S, Meitzner GD, Iglesia E (2001) J Phys Chem B 105:5743

    Article  CAS  Google Scholar 

  33. Xu J, Bartholomew CH (2005) J Phys Chem B 109:2392

    Article  CAS  Google Scholar 

  34. Loaiza-Gil A, Fontal B, Rueda F, Mendialdua J, Casanova R (1999) Appl Catal A: Gen 177:193

    Article  CAS  Google Scholar 

  35. Eliason SA, Bartholomew CH (1997) Stud Surf Sci Catal 111:517

    CAS  Google Scholar 

  36. Dwyer DJ, Hardenbergh JH (1984) J Catal 87:66

    Article  CAS  Google Scholar 

  37. Jin Y, Datye AK (2000) J Catal 196:8

    Article  CAS  Google Scholar 

  38. Fernández A, Prieto P, Quirós C, Sanz JM, Martin JM, Vacher B (1996) Appl Phys Lett 69:764

    Article  Google Scholar 

  39. Kim WJ, Ruano OA, Wolfenstine J, Frommeyer G, Sherby OD (1997) J Mater Res 12:2317

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support for this work from U.S. Department of Energy (under contact DE-FC26-03NT41965) and the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Seth, D., Dozier, A.K. et al. Fischer–Tropsch Synthesis: Morphology, Phase Transformation and Particle Size Growth of Nano-scale Particles. Catal Lett 117, 1–17 (2007). https://doi.org/10.1007/s10562-007-9194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9194-6

Keywords

Navigation