Skip to main content
Log in

Synthesis of Nano-catalysts by Induction Suspension Plasma Technology (SPS) for Fischer–Tropsch Reaction

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Nanometric catalysts were synthesized through induction suspension plasma technology (SPS) for application in the Fischer–Tropsch synthesis (FTS). Carbon-supported single metal catalysts (Co/C, Fe/C), bimetallic formulations (Co–Fe/C), and ternary (Co–Fe–Mo and Co–Fe–Ni) systems have been considered in this work. SPS has been selected because it simultaneously allows for: (1) atomizing and generating metallic nanoparticles; (2) creating particularly Fe carbides, which are important in Fe-based FTS reaction mechanism; (3) in situ production of the nanometric graphitic-carbon matrix; and (4) saving time in catalyst synthesis, limiting sample preparation steps and eliminating post synthesis treatment before use. Porosity measurements by the Brunauer–Emmett–Teller method indicate that the samples are essentially non-porous. The synthesized catalysts characterized by X-ray Diffraction analysis show the presence of both metallic and carbidic species. The graphitic-carbon matrix has substantial structural defects that make it partly amorphous. Scanning Electron Microscopy analysis coupled with Energy Dispersive X-ray Spectroscopy mapping shows uniform dispersion of the metal moieties in the carbon support. Analysis by Transmission Electron Microscopy imaging displays metal nanoparticles with mean particle size within the 9–15 nm range enveloped in the carbon matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ding M, Yang Y, Wu B, Xu J, Zhang C, Xiang H, Li Y (2009) Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer–Tropsch synthesis. J Mol Catal A: Chem 303:65–71

    Article  CAS  Google Scholar 

  2. Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A (2010) Deactivation of cobalt based Fischer–Tropsch catalysts: a review. Catal Today 154(3–4):162–182

    Article  CAS  Google Scholar 

  3. Moodley DJ, van de Loosdrecht J, Saib AM, Niemantsverdriet HJW (2010) The formation and influence of carbon on cobalt-based Fischer–Tropsch synthesis catalysts: an integrated review. In: Davis BH, Occelli ML (eds) Advances in fisher tropsch synthesis, catalysts and catalysis. CRC Press, Boca Raton, pp 49–81

    Google Scholar 

  4. Bahgat M (2006) Technology of iron carbide synthesis. J Mater Sci Technol 22(03):423–432

    Article  CAS  Google Scholar 

  5. Bengoa JF, Alvarez AM, Cagnoli MV, Gallegos NG, Marchetti SG (2007) Influence of intermediate iron reduced species in Fischer–Tropsch synthesis using Fe/C catalysts. Appl Catal A 325:68–75

    Article  CAS  Google Scholar 

  6. Davis BH (2009) Fischer–Tropsch synthesis: reaction mechanisms for iron catalysts. Catal Today 141:25–33

    Article  CAS  Google Scholar 

  7. Yoo Y-G, Yang D-S, Jiang B, Yu S-C, Greneche JM (2006) Local ordering study of nanostructured FeCo–C alloys for various Fe contents. J Korean Phys Soc 48(6):1463–1467

    CAS  Google Scholar 

  8. Blanchard J, Abatzoglou N, Eslahpazir-Esfandabadi R, Gitzhofer F (2010) Fischer–Tropsch synthesis in a slurry reactor using a nano-iron carbide catalyst produced by a plasma spray technique. Ind Eng Chem Res 49(15):6948–6955

    Article  CAS  Google Scholar 

  9. Aluha J, Boahene P, Dalai A, Hu Y, Bere K, Braidy N, Abatzoglou N (2015) Synthesis and characterisation of nanometric Co/C and Fe/C catalysts for Fischer–Tropsch synthesis: a comparative study using a fixed-bed reactor. Ind Eng Chem Res 54(43):10661–10674

    Article  CAS  Google Scholar 

  10. Rutkovskii AE, Vishnyakov LR, Chekhovskii AA, Kirkun NI (2000) Use of plasma technology in creating catalysts on carriers. Powder Metall Met Ceram 39(3–4):207–209

    Article  CAS  Google Scholar 

  11. Liu C-J, Vissokov GP, Jang BWL (2002) Catalyst preparation using plasma technologies. Catal Today 72(3–4):173–184

    Article  CAS  Google Scholar 

  12. Girshick SL, Chiu CP, Muno R, Wu CY, Yang L, Singh SK, McMurry PH (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24(3):367–382

    Article  CAS  Google Scholar 

  13. Dignard NM (1998) Experimental optimization of the spheroidization of metallic and ceramic powders with induction plasma. MSc Thesis. Université de Sherbrooke, Sherbrooke

  14. Sanpo N (2014) Solution precursor plasma spray system. Springer, Berlin

    Google Scholar 

  15. Okamoto H (1992) The C–Fe (carbon–iron) system. J Ph Equilib 13(5):543–565

    Article  CAS  Google Scholar 

  16. Bengoa JF, Alvarez AM, Cagnoli MV, Gallegos NG, Marchetti SG (2007) Influence of intermediate iron reduced species in Fischer–Tropsch synthesis using Fe/C catalysts. Appl Catal A 325(1):68–75

    Article  CAS  Google Scholar 

  17. Digges TG, Rosenberg SJ, Geil GW (1966) Heat treatment and properties of iron and steel. Vol Monograph 88. US Department of Commerce, National Bureau of Standards, Washington

  18. Aluha J, Braidy N, Dalai A, Abatzoglou N (2016) Low-temperature Fischer–Tropsch synthesis using plasma-synthesised nanometric Co/C and Fe/C catalysts. Can J Chem Eng. doi:10.1002/cjce.22537

  19. Aluha J, Braidy N, Dalai A, Abatzoglou N(2015) Low-temperature Fischer–Tropsch synthesis with carbon-supported nanometric iron-cobalt catalysts. In: 23rd European biomass conference and exhibition, Vienna, 1–4 June, 2015. pp 988–994

  20. Aluha J, Abatzoglou N (2016) Synthetic fuels from 3-φ Fischer–Tropsch synthesis using syngas feed and novel nanometric catalysts synthesised by plasma. Biomass Bioenerg. doi:10.1016/j.biombioe.2016.05.010

  21. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  CAS  Google Scholar 

  22. Kniess CT, Lima JCd, Prates PB (eds) (2012) The quantification of crystalline phases in materials: applications of Rietveld method. Sintering—methods and products. InTech, Rijeka

  23. Venugopal A, Aluha J, Scurrell MS (2003) The water-gas shift reaction over Au-based, bimetallic catalysts. The Au–M (M = Ag, Bi Co, Cu, Mn, Ni, Pb, Ru, Sn, Tl) on Iron (III) oxide system. Catal Lett 90(1–2):1–6

    Article  CAS  Google Scholar 

  24. Jong S-J, Cheng S (1995) Reduction behavior and catalytic properties of cobalt containing ZSM-5 zeolites. Appl Catal A 126:51–66

    Article  CAS  Google Scholar 

  25. Okamoto H (2008) Co–Fe (Cobalt–Iron). J Ph Equilib Diffus 29(4):383–384

    Article  CAS  Google Scholar 

  26. Jia L (2005) Inductively coupled thermal plasma synthesis of CeO2-based nano-powders. MSc Thesis. Université de Sherbrooke, Sherbrooke

  27. Goortani BM (2006) Synthesis and evaluation of the size and the morphology of SiO2 nanoparticles in ICP RF plasma reactors. PhD Thesis. Université de Sherbrooke, Sherbrooke

  28. Gore JP, Sane A (2011) Flame synthesis of carbon nanotubes. In: Yellampalli S (ed) Carbon nanotubes—synthesis, characterization, applications. InTech, Rijeka, pp 121–146

    Google Scholar 

  29. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A 287:60–67

    Article  CAS  Google Scholar 

  30. van Steen E, Prinsloo FF (2002) Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts. Catal Today 71:327–334

    Article  Google Scholar 

  31. Küttel OM, Groening O, Emmenegger C, Schlapbach L (1998) Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl Phys Lett 73(15):2113–2115

    Article  Google Scholar 

  32. Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens 493904:1–24

    Article  Google Scholar 

  33. Blanchard J, Oudghiri-Hassani H, Abatzoglou N, Jankhah S, Gitzhofer F (2008) Synthesis of nanocarbons via ethanol dry reforming over a carbon steel catalyst. Chem Eng J 143(1–3):186–194

    Article  CAS  Google Scholar 

  34. Schneeweiss O, Zbořil R, David B, Heřmánek M, Mashlan M (2009) Solid-state synthesis of α-Fe and iron carbide nanoparticles by thermal treatment of amorphous Fe2O3. Hyperfine Interact 189(1):167–173

    Article  CAS  Google Scholar 

  35. Bell MS, Teo KBK, Lacerda RG, Milne WI, Hash DB, Meyyappan M (2006) Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl Chem 78(6):1117–1125

    Article  CAS  Google Scholar 

  36. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867–2872

    Article  CAS  Google Scholar 

  37. Z-j Wang, Skiles S, Yang F, Yan Z, Goodman DW (2012) Particle size effects in Fischer–Tropsch synthesis by cobalt. Catal Today 181:75–81

    Article  Google Scholar 

  38. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964

    Article  CAS  Google Scholar 

  39. Park J-Y, Lee Y-J, Khanna PK, Jun K-W, Bae JW, Kim YH (2010) Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: effect of particle size of iron oxide. J Mol Catal A Chem 323(1–2):84–90

    Article  CAS  Google Scholar 

  40. McCusker LB, Dreele RBV, Cox DE, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Cryst 32:36–50

    Article  CAS  Google Scholar 

  41. Ram S (2001) Allotropic phase transformations in HCP, FCC and BCC metastable structures in Co-nanoparticles. Mater Sci Eng A 304–306:923–927

    Article  Google Scholar 

  42. Lu W, Huang P, He C, Yan B (2013) XRD, SEM and XAS studies of FeCo films electrodeposited at different current density. Int J Electrochem Sci 8:914–923

    CAS  Google Scholar 

  43. Terakado O, Uno Y, Hirasawa M (2014) Synthesis of fine iron-cobalt alloy particles by the co-reduction of precursors with solvated electrons in sodium ammonia solution. Mater Trans 55(3):517–521

    Article  CAS  Google Scholar 

  44. Dlamini MW, Kumi DO, Phaahlamohlaka TN, Lyadov AS, Billing DG, Jewell LL, Coville NJ (2015) Carbon spheres prepared by hydrothermal synthesis—a support for bimetallic iron cobalt Fischer–Tropsch catalysts. ChemCatChem 7:3000–3011

    Article  CAS  Google Scholar 

  45. Fu T, Jiang Y, Lv J, Li Z (2013) Effect of carbon support on Fischer–Tropsch synthesis activity and product distribution over Co-based catalysts. Fuel Process Technol 110:141–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Canadian National Centres of Excellence (NCE) BioFuelNet for financial support; Prof. Nadi Braidy in conjunction with the CCM (Centre de Caractérisation des Matériaux, Université de Sherbrooke) staff for facilitating the characterization: Mrs. Irène Kelsey Lévesque and Mr. Carl St.-Louis for BET surface area analysis, Mr. Charles Bertrand for Microscopy (SEM & TEM), and Mr. Stéphane Gutierrez for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gitzhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aluha, J., Bere, K., Abatzoglou, N. et al. Synthesis of Nano-catalysts by Induction Suspension Plasma Technology (SPS) for Fischer–Tropsch Reaction. Plasma Chem Plasma Process 36, 1325–1348 (2016). https://doi.org/10.1007/s11090-016-9734-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9734-1

Keywords

Navigation