Skip to main content
Log in

Effect of Hydrothermal Treatment on Precipitated Iron Catalyst for Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two series of Fe/Cu/K catalysts were prepared by co-precipitation (CP-xK) and by co-precipitation accompanied with hydrothermal treatment (HY-xK), respectively. The catalysts were investigated by N2 adsorption, X-ray diffraction (XRD), Mössbauer effect spectroscopy (MES), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), H2 temperature-programmed reduction (H2-TPR) and thermogravimetric analysis. N2 adsorption revealed that HY-xK catalysts displayed relatively low surface area, but generated additional macropore. XRD and SEM showed that HY-xK catalysts were well grown crystallite, while the CP-xK catalysts were amorphous. In addition, hydrothermal treatment remarkably influenced the growth orientation of hematite nanocrystals, resulting in the preferential exposure of the (110) plane. HRTEM also indicated that HY-1.32K was dominated by Fe2O3 nanocrystals with (110) plane, and the CP-1.38K primary particle mainly exposed (104) plane. The H2-TPR profiles for the two series of catalysts were similar, though the merged and smooth peak of HY-xK catalysts possibly suggested that the component elements were more uniform. MES and XRD indicated that the catalyst after hydrothermal treatment can be easily reduced into active carbide phases in Fischer–Tropsch synthesis (FTS) reaction. In FTS reaction, the HY-xK catalysts showed higher activity and better stability than the CP-xK catalysts given comparable K content.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bukur DB, Lang X (1999) Ind Eng Chem Res 38:3270

    Article  CAS  Google Scholar 

  2. Dry ME (1990) Catal Lett 7:241

    Article  CAS  Google Scholar 

  3. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  4. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  5. O’Brien RJ, Davis BH (2004) Catal Lett 94:1

    Article  Google Scholar 

  6. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) J Catal 15:190

    Article  CAS  Google Scholar 

  7. Arakawa H, Bell AT (1983) Ind Eng Chem Process Des Dev 22:97

    Article  CAS  Google Scholar 

  8. Bukur DB, Mukesh D, Patel SA (1990) Ind Eng Chem Res 29:194

    Article  CAS  Google Scholar 

  9. Dry ME, Oosthuizen G (1968) J Catal 11:18

    Article  CAS  Google Scholar 

  10. Miller DG, Moskovits M (1988) J Phys Chem 92:6081

    Article  CAS  Google Scholar 

  11. O’Brien RJ, Xu L, Spicer RL, Davis BH (1996) Energy Fuels 10:921

    Article  Google Scholar 

  12. Benziger J, Madix R (1980) Surf Sci 94:119

    Article  CAS  Google Scholar 

  13. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  14. Yang Y, Xiang HW, Xu YY, Bai L, Li YW (2004) Appl Catal A 266:181

    Article  CAS  Google Scholar 

  15. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Ind Eng Chem Res 29:1588

    Article  CAS  Google Scholar 

  16. Davis BH, Tungate FL (1991) DOE, Liquefaction contractors meeting, p 275

  17. Shultz JF, Hofer LJE, Karn FS, Anderson RB (1962) J Phys Chem 66:501

    Article  CAS  Google Scholar 

  18. Liu KK, Suo HY, Zhang C, Xu J, Yang Y, Xiang HW, Li YW (2010) Catal Commun 12:137

    Article  CAS  Google Scholar 

  19. Schwuger M-J, Stickdorn K, Schomaecker R (1995) Chem Rev 95:849

    Article  CAS  Google Scholar 

  20. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) J Phys Chem B 104:1141

    Article  CAS  Google Scholar 

  21. Calderone VR, Shiju NR, Curulla-Ferré D, Chambrey S, Khodakov A, Rose A, Thiessen J, Jess A, Rothenberg G (2013) Angew Chem Int Ed 52:4275

    Article  Google Scholar 

  22. Dong HH, Xie MJ, Xu J, Li MF, Peng LM, Guo XF, Ding WP (2011) Chem Commun 47:4019

    Article  CAS  Google Scholar 

  23. Kölbel H, Ralek M (1980) Catal Rev Sci Eng 21:225

    Article  Google Scholar 

  24. Boudart M, McDonald MA (1984) J Phys Chem 88:2185

    Article  CAS  Google Scholar 

  25. Feng S, Xu R (2000) Chem. Res 34:239

    Article  Google Scholar 

  26. Mohapatra SK, John SE, Banerjee S, Misra M (2009) Chem Mater 21:3048

    Article  CAS  Google Scholar 

  27. Qu J, Yin YX, Wang YQ, Yan Y, Guo YG, Song WG (2013) ACS Appl Mater Interfaces 5:3932

    Article  CAS  Google Scholar 

  28. Sun JQ, Zheng SK, Zhang K, Song DC, Liu YT, Sun XD, Chen JG (2014) J Mater Chem 2:13116

    Article  CAS  Google Scholar 

  29. Bukur DB, Koranne M, Lang X, Rao KRPM, Huffman GP (1995) Appl Catal A 126:85

    Article  CAS  Google Scholar 

  30. Lox ES, Froment GF (1993) Ind Eng Chem Res 32:71

    Article  CAS  Google Scholar 

  31. Huang CS, Xu L, Davis BH (1993) Fuel Sci Technol Int 11:639

    Article  CAS  Google Scholar 

  32. Shroff MD, Kalakkad DS, Coulter KE, Kohler SD, Harrington MS, Jackson NB, Sault AG, Datye AK (1995) J Catal 156:185

    Article  CAS  Google Scholar 

  33. Sirimanothan N, Hamdeh HH, Zhang Y, Davis BH (2002) Catal Lett 82:181

    Article  CAS  Google Scholar 

  34. Ning WS, Koizumi N, Chang H, Mochizuki T, Itoh T, Yamada M (2006) Appl Catal A 312:35

    Article  CAS  Google Scholar 

  35. Cui XJ, Xu J, Zhang CH, Yang Y, Gao P, Wu BS, Li YW (2011) J Catal 282:35

    Article  CAS  Google Scholar 

  36. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurences and uses. Second edition. VCH, Weinheim

  37. Liu Z, Lv BL, Wu D, Sun YH, Xu Y (2012) Eur J Inorg Chem 2012:4076

    Article  CAS  Google Scholar 

  38. Suo HY, Wang SG, Zhang CH, Xu J, Wu BS, Yang Y, Xiang HW, Li YW (2012) J Catal 286:111

    Article  CAS  Google Scholar 

  39. Lohitharn N, Goodwin JG Jr (2008) J Catal 260:7

    Article  CAS  Google Scholar 

  40. Rankin JL, Bartholomew CH (1986) J Catal 100:533

    Article  CAS  Google Scholar 

  41. Kavitha MK, John H, Gopinath P (2014) Mater Res Bull 49:132

    Article  CAS  Google Scholar 

  42. Mahajan D, Gütlich P, Stumm U (2003) Catal Commun 4:101

    Article  CAS  Google Scholar 

  43. Herranz T, Rojas S, Perez-Alonso F, Ojeda M, Terreros P, Fierro J (2006) J Appl Catal A 311:66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the support from the National Natural Science Foundation of China (No. 21373254). This work is also supported by Wuhan Kaidi General Research Institute of Engineering & Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Chen, J. Effect of Hydrothermal Treatment on Precipitated Iron Catalyst for Fischer–Tropsch Synthesis. Catal Lett 145, 702–711 (2015). https://doi.org/10.1007/s10562-014-1457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1457-4

Keywords

Navigation