Skip to main content
Log in

Biomimic recognition and catalysis by an imprinted catalysts: a rational design of molecular self-assembly toward predetermined high specificity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This article presents an original work contributing to the rational design of imprinted catalyst by molecular self-assembly toward predetermined high specificity. Assembling with p-nitrophenyl phosphate as the transition state analogue (TSA) of p-nitrophenyl acetate esterolysis and 1-vinylimidazole as the functional monomer, the imprinted catalyst was prepared. An increase in the amount of assembled monomer results in a higher activity of hydrolysis, which, however, does not lead to an improvement of specificity. The best specificity is shown at the optimal self-assembly (corresponding to a stoichiometric interaction of monomer-TSA). Higher or lower an amount of assembled monomer would lead to a dramatic decrease in this specificity. Related information indicates that these may be a result of increasing specific interaction between the TSA and binding sites, which make the catalyst capable of selectively recognizing the transition state and promoting the conversion from reactant to the transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Hirsch A.K.H., Fischer F.R., Diederich F. (2007) Angew. Chem. Int. Ed. 46(3):338

    Article  CAS  Google Scholar 

  2. Das S., Incarvito C.D., Crabtree R.H., Brudvig G.W. (2006) Science 312(5782):1941

    Article  PubMed  CAS  Google Scholar 

  3. Shao N., Jin J.Y., Cheung S.M., Yang R.H., Chan W.H., Mo T. (2006) Angew. Chem. Int. Ed. 45(30):4944

    Article  CAS  Google Scholar 

  4. Hu X., An Q., Li G., Tao S., Liu J. (2006) Angew. Chem. Int. Ed. 45(48):8145

    Article  CAS  Google Scholar 

  5. Miyata T., Jige M., Nakaminami T., Uragami T. (2006) Proc. Natl. Acad. Sci. 103(5):1190

    Article  PubMed  CAS  Google Scholar 

  6. Lettau K., Warsinke A., Katterle M., Danielsson B., Scheller F.W. (2006) Angew. Chem. Int. Ed. 45(42):6986

    Article  CAS  Google Scholar 

  7. Sellergren B. (2000) Angew. Chem. Int. Ed. 39(6):1031

    Article  CAS  Google Scholar 

  8. Katz A., Davis M.E. (2000) Nature 403(6767):286

    Article  PubMed  CAS  Google Scholar 

  9. Greene N.T., Shimizu K.D. (2005) J. Am. Chem. Soc. 127(15):5695

    Article  PubMed  CAS  Google Scholar 

  10. Hart B.R., Rush D.J., Shea K.J. (2000) J. Am. Chem. Soc. 122(3):460

    Article  CAS  Google Scholar 

  11. Kim H., Guiochon G. (2005) Anal. Chem. 77(19):6415

    Article  PubMed  CAS  Google Scholar 

  12. Wulff G. (2002) Chem. Rev. 102(1):1

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  13. Sellergren B., Karmalkar R.N., Shea K.J. (2000) J. Org. Chem. 65(13):4009

    Article  PubMed  CAS  Google Scholar 

  14. Wulff G., Gross T., Schonfeld R. (1997) Angew. Chem. Int. Ed. 36(18):1962

    Article  CAS  Google Scholar 

  15. Shi R.X., Guo C.H., Zou X.H., Zhu C.Y., Zuo Y.J., Deng Y.D. (2002) Prog. Chem. 14(3):182

    CAS  Google Scholar 

  16. Zhou J., He X.W., Zhao J., Shi H.M. (1999) Chem. Res. Chin. Univ. 9(2):204

    Google Scholar 

  17. Spivak D.A., Simon R., Campbell J. (2004) Anal. Chim. Act. 504(1):23

    Article  CAS  Google Scholar 

  18. Zhang D., Li S., Huang J., Luo G. (2006) High Perform. Polym. 8(6):949

    Article  Google Scholar 

  19. Svenson J., Andersson H.S., Piletsky S.A., Nicholls I.A. (1998) J. Mol. Recogn. 11(1):83

    Article  CAS  Google Scholar 

  20. Kawanami Y., Yunoki T., Nakamura A., Fujii K., Umano K., Yamauchi H., Masuda K. (1999) J. Mol. Catal. A 145(2):107

    Article  CAS  Google Scholar 

  21. Odenbaugh A.L., Helms E.D., Iverson B.L. (2000) Bioorg. Med. Chem. 8(2):413

    Article  PubMed  CAS  Google Scholar 

  22. Luo L.T., Li S.J., Zhu Y. (2005) J. Serb. Chem. Soc. 70(12):1419

    Article  CAS  Google Scholar 

  23. Takeda K., Kobayashi T. (2005) Sci. Technol. Adv. Mater. 6(2):165

    Article  CAS  Google Scholar 

  24. Liu J.Q., Wulff G. (2004) J. Am. Chem. Soc. 126(24):7452

    Article  PubMed  CAS  Google Scholar 

  25. Volkmann A., Bruggemann O. (2006) React. Funct. Polym. 66(12):1725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank NSFC (Grant No.20603010), Hubei Provincial Science & Technology Department and Central China Normal University for presenting financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songjun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Li, S., Li, W. et al. Biomimic recognition and catalysis by an imprinted catalysts: a rational design of molecular self-assembly toward predetermined high specificity. Catal Lett 115, 169–175 (2007). https://doi.org/10.1007/s10562-007-9084-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9084-y

Keywords

Navigation