Skip to main content

Advertisement

Log in

Novel precipitated iron Fischer–Tropsch catalysts with Fe3O4 coexisting with α-Fe2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present study was undertaken to investigate the catalytic behavior of an industrial iron catalyst (Fe/Cu/K/SiO2) prepared from ferrous sulfate precursor for Fischer–Tropsch (FT) synthesis, in which different amount of Fe3O4 coexist with α-Fe2O3. The catalyst samples were characterized by BET, XRD, H2-TPR and Mössbauer effect spectroscopy (MES). The FT synthesis performance of the catalysts were carried out in a fixed bed reactor (FBR) under reaction conditions of 250 °C, 1.5 MPa, 2.0 nL/g-cat/h, and H2/CO=2/1 for 200 h. The results from XRD and MES for the catalyst samples of pre- and post-reduction indicate that more iron carbides form in the catalysts that have lower Fe3O4 contents. H2-TPR for the catalysts displays that Fe3O4 may facilitate the reduction of catalysts only when it was highly dispersed. FT reaction study in the FBR shows that the catalysts become more active with the decrease of Fe3O4 contents in the catalysts. However, the catalyst with certain amount of highly dispersed Fe3O4 exhibited high FT synthesis activity with CO conversion more than 75%. The catalyst also displayed much less olefins selectivity. A comparison of FTS performances of one of these catalysts with some known catalysts was also made in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jorthimurugesan J.G. Goodwin S.K. Gangwal J.J. Spivey (2000) Catal. Today 58 335 Occurrence Handle10.1016/S0920-5861(00)00266-2

    Article  Google Scholar 

  2. R. Zhao J.G. Goodwin K. Jorthimurugesan S.K. Gangwal J.J. Spivey (2001) Ind. Eng. Chem. Res. 40 1065 Occurrence Handle10.1021/ie000644f

    Article  Google Scholar 

  3. Y. Jin A.K. Datye (2000) J. Catal. 196 8 Occurrence Handle10.1006/jcat.2000.3024

    Article  Google Scholar 

  4. D.B. Bukur C. Sivaraj (2002) Appl. Catal. (A) 231 201 Occurrence Handle10.1016/S0926-860X(02)00053-4

    Article  Google Scholar 

  5. D.B. Bukur L. Nowichi X. Lang (1994) Chem. Eng. Sci. 49 4615

    Google Scholar 

  6. M.E. Dry (1981) NoChapterTitle J.R. Anderson M. Boudart (Eds) Catalysis Science and Technology Springer New York

    Google Scholar 

  7. B.H. Davis (2003) Catal. Today 84 83 Occurrence Handle10.1016/S0920-5861(03)00304-3

    Article  Google Scholar 

  8. D.B. Bukur X. Lang D. Mukesh W.H. Zimmerman M.P. Rosynek C. Li (1990) Ind. Eng. Chem. Res. 29 1588 Occurrence Handle10.1021/ie00104a003

    Article  Google Scholar 

  9. J.F. Shultz W.K. Hall T.A. Dubs R.B. Anderson (1956) J. Am. Chem. Soc. 28 282 Occurrence Handle10.1021/ja01583a009

    Article  Google Scholar 

  10. R. Dictor A.T. Bell (1986) J. Catal. 97 121 Occurrence Handle10.1016/0021-9517(86)90043-6

    Article  Google Scholar 

  11. K.R.P.M. Rao F.E. Huggins V. Mahajan G.P. Huffman V.U.S. Rao B.L. Bhatt B.D. Bukur B.H. Davis R.J. O’Brien (1995) Top Catal. 2 71 Occurrence Handle10.1007/BF01491956

    Article  Google Scholar 

  12. L.D. Mansker Y. Jin D.B. Bukur A.K. datye (1999) Appl. Catal. A 186 277 Occurrence Handle10.1016/S0926-860X(99)00149-0

    Article  Google Scholar 

  13. J.P. Reymond P. Meriaudeau S.J. Teichner (1982) J. Catal. 75 39 Occurrence Handle10.1016/0021-9517(82)90119-1

    Article  Google Scholar 

  14. C.S. Kuivila P.C. Stair J.B. Butt (1989) J. Catal. 118 299 Occurrence Handle10.1016/0021-9517(89)90319-9

    Article  Google Scholar 

  15. D.J. Dwyer G.A. Somorjai (1978) J. Catal. 52 291 Occurrence Handle10.1016/0021-9517(78)90143-4

    Article  Google Scholar 

  16. C.S. Huang L. Xu B.H. Davis (1993) Fuel Sci. Technol. Int. 11 6

    Google Scholar 

  17. D.B. Bukur, X. Lang and Y. Ding, Appl. Catal. A (1999) 255

  18. G. Bian A. Oonnuki N. Koizumi H. Nomoto M. Yamada (2002) J. Mol. Catal. A 186 203 Occurrence Handle10.1016/S1381-1169(02)00186-3

    Article  Google Scholar 

  19. K. Sudsakorn J.G. Goodwin A.A. Adeyiga (2003) J. Catal. 213 204 Occurrence Handle10.1016/S0021-9517(02)00010-6

    Article  Google Scholar 

  20. T.R. Motjope H.T. Dlamini G.R. Hearne N.J. Coville (2002) Catal. Today 71 335 Occurrence Handle10.1016/S0920-5861(01)00460-6

    Article  Google Scholar 

  21. S. Li G.D. Meitzner E. Iglesia (2001) J. Phys. Chem. B 105 5743 Occurrence Handle10.1021/jp010288u

    Article  Google Scholar 

  22. S. Li W. Ding G.D. Meitzner E. Iglesia (2002) J. Phys. Chem. B 106 85 Occurrence Handle10.1021/jp0118827

    Article  Google Scholar 

  23. S. Li S. Krishnamoorthy A. Li G.D. Meitzner E. Iglesia (2002) J. Catal. 206 202 Occurrence Handle10.1006/jcat.2001.3506

    Article  Google Scholar 

  24. B. Wu L. Bai H. Xiang Y.W. Li Z. Zhang B. Zhong (2004) Fuel 83 205 Occurrence Handle10.1016/S0016-2361(03)00253-9

    Article  Google Scholar 

  25. B. Wu L. Tian L. Bai Z. Zhang H. Xiang Y.W. Li (2004) Catal. Comm. 5 253 Occurrence Handle10.1016/j.catcom.2004.02.012

    Article  Google Scholar 

  26. I. Tomoyuki H. Nagata O. Yamase H. Matsuda T. Kuroda M. Yoshikawa T. Takeguchi A. Miyamoto (1986) Appl. Catal. 24 257 Occurrence Handle10.1016/S0166-9834(00)81274-9

    Article  Google Scholar 

  27. Y. Yang H. Xiang Y. Xu L. Bai W.Y. Li (2004) Appl. Catal. A. 266 181 Occurrence Handle10.1016/j.apcata.2004.02.018

    Article  Google Scholar 

  28. D.B. Bukur L. Nowichi R.K. Manne X. Lang (1995) J. Catal. 155 366 Occurrence Handle10.1006/jcat.1995.1218

    Article  Google Scholar 

  29. R. Fan X.H. Chen Z. Gui L. Liu Z.Y. Chen (2001) Mater. Res. Bull. 36 497 Occurrence Handle10.1016/S0025-5408(01)00527-X

    Article  Google Scholar 

  30. M.D. Shroff D.S. Kalakkad K.E. Coulter S.D. coulter M.S. Harrington N.B. Jackson A.G. Sault A.K. Datye (1995) J. Catal. 156 185 Occurrence Handle10.1006/jcat.1995.1247

    Article  Google Scholar 

  31. N. Sirmanothan H.H. Hamdeh Y. Zhang B.H. Davis (2002) Catal. Lett. 82 181 Occurrence Handle10.1023/A:1020562827386

    Article  Google Scholar 

  32. D.B. Bukur K. Okabe M.P. Rosynek C. Li D. Wang K.R.P.M. Rao G.P. Huffman (1995) J. Catal. 155 353

    Google Scholar 

  33. Y. Jin A.K. Datye (2000) J. Catal. 196 8 Occurrence Handle10.1006/jcat.2000.3024

    Article  Google Scholar 

  34. K.R.P.M. Rao F.E. Huggins G.P. Huffman R.J. Gormley R.J. O’Brien B.H. Davis (1996) Energy Fuels 10 546

    Google Scholar 

  35. G.P. Van der Laan ParticleVan Der A.A.C.M. Beenackers (1999) Catal. Rev. – Sci. Eng. 41 255

    Google Scholar 

  36. D.B. Bukur L. Nowichi X. Lang (1994) Chem. Eng. Sci. 49 4615

    Google Scholar 

  37. W.L. Dijk ParticleVan J.W. Niemantsverdriet H.S. Kraan ParticleVan der Van der Baan (1982) Appl. Catal. 2 273

    Google Scholar 

  38. T.C. Bromfield N.J. Coville (1999) Appl. Catal. A 186 297

    Google Scholar 

  39. R.A. Diffenbach D.J. Fauth (1986) J. Catal. 100 466

    Google Scholar 

  40. T.R. Motjope H.T. Dlamini G.R. Hearne N.J. Coville (2002) Catal. Today 71 335 Occurrence Handle10.1016/S0920-5861(01)00460-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Wang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Tian, L., Xiang, H. et al. Novel precipitated iron Fischer–Tropsch catalysts with Fe3O4 coexisting with α-Fe2O3. Catal Lett 102, 211–218 (2005). https://doi.org/10.1007/s10562-005-5858-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-5858-2

Keywords:

Navigation