Skip to main content

Advertisement

Log in

Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Human amniotic membrane (HAM) has been widely used as a natural scaffold in tissue engineering due to many of its unique biological properties such as providing growth factors, cytokines and tissue inhibitors of metalloproteinases. This study aimed at finding the most suitable and supportive layer of HAM as a delivery system for autologous or allogeneic cell transplantation. Three different layers of HAM were examined including basement membrane, epithelial and stromal layers. In order to prepare the basement membrane, de-epithelialization was performed using 0.5 M NaOH and its efficiency was investigated by histological stainings, DNA quantification, biomechanical testing and electron microscopy. Adipose-derived stromal cells (ASCs) and a human immortalized keratinocyte cell line (HaCaT) were seeded on the three different layers of HAM and cultured for 3 weeks. The potential of the three different layers of HAM to support the attachment and viability of cells were then monitored by histology, electron microscopy and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, mechanical strengths of the basement membrane were assessed before and after cell culture. The results indicated that the integrity of extra cellular matrix (ECM) components was preserved after de-epithelialization and resulted in producing an intact basement amniotic membrane (BAM). Moreover, all three layers of HAM could support the attachment and proliferation of cells with no visible cytotoxic effects. However, the growth and viability of both cell types on the BAM were significantly higher than the other two layers. We conclude that growth stimulating effectors of BAM and its increased mechanical strength after culturing of ASCs, besides lack of immunogenicity make it an ideal model for delivering allogeneic cells and tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AECs:

Amniotic epithelial cells

AM:

Amniotic membrane

AMCs:

Amniotic mesenchymal cells

ASCs:

Adipose-derived stromal cells

BM:

Basement membrane

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

EAM:

Epithelial amniotic membrane

ECM:

Extracellular matrix

EDTA:

Ethylenediaminetetraacetic acid

EGF:

Epidermal growth factor

FBS:

Fetal bovine serum

GAG:

Glycosaminoglycan

HaCaT:

Human immortalized keratinocyte cell line

HAM:

Human amniotic membrane

H–E:

Hematoxylin and eosin

KGF:

Keratinocyte growth factor

MSCs:

Mesenchymal stem cells

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

OD:

Optical density

PBS:

Phosphate buffered saline

PDGF:

Platelet-derived growth factor

SAM:

Stromal amniotic membrane

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

References

  • Ahmadian Kia N, Bahrami AR, Ebrahimi M, Matin MM, Neshati Z, Almohaddesin MR, Aghdami N, Bidkhori HR (2011) Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci 44(3):178–185

    Article  PubMed  CAS  Google Scholar 

  • Alcaraz A, Mrowiec A, Insausti CL, Bernabé-García Á, García-Vizcaíno EM, López-Martínez MC, Monfort A, Izeta A, Moraleda JM, Castellanos G (2015) Amniotic membrane modifies the genetic program induced by TGFß, stimulating keratinocyte proliferation and migration in chronic wounds. PLoS ONE 10(8):1–28

    Article  CAS  Google Scholar 

  • Bank RA, Krikken M, Beekman B, Stoop R, Maroudas A, Lafebers FP, Te Koppele JM (1997) A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol 16(5):233–243

    Article  PubMed  CAS  Google Scholar 

  • Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed 48(30):5406–5415

    Article  CAS  Google Scholar 

  • Chan B, Leong K (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirman T, Beltram M, Schollmayer P, Rožman P, Kreft ME (2014) Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 15(2):177–192

    Article  PubMed  CAS  Google Scholar 

  • Connelly JT, García AJ, Levenston ME (2007) Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28(6):1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Davis JS (1910) Skin transplantation. Johns Hopkins Hosp Rep 15:307–396

    Google Scholar 

  • Davis GE, Engvall E, Varon S, Manthorpe M (1987) Human amnion membrane as a substratum for cultured peripheral and central nervous system neurons. Dev Brain Res 33(1):1–10

    Article  Google Scholar 

  • Dhall K (1984) Amnion graft for treatment of congenital absence of the vagina. BJOG Int J Obstet Gynaecol 91(3):279–282

    Article  CAS  Google Scholar 

  • Díaz-Prado S, Rendal-Vázquez ME, Muiños-López E, Hermida-Gómez T, Rodríguez-Cabarcos M, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010) Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair. Cell Tissue Bank 11(2):183–195

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Chia S-M, Han R, Chang S, Tang H, Yu H (2006) 3D hepatocyte monolayer on hybrid RGD/galactose substratum. Biomaterials 27(33):5669–5680

    Article  PubMed  CAS  Google Scholar 

  • Eitan Y, Sarig U, Dahan N, Machluf M (2009) Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods 16(4):671–683

    Article  Google Scholar 

  • El Khwad M, Stetzer B, Moore R, Kumar D, Mercer B, Arikat S, Redline R, Mansour J, Moore J (2005) Term human fetal membranes have a weak zone overlying the lower uterine pole and cervix before onset of labor. Biol Reprod 72(3):720–726

    Article  PubMed  CAS  Google Scholar 

  • Gholipourmalekabadi M, Mozafari M, Salehi M, Seifalian A, Bandehpour M, Ghanbarian H, Urbanska AM, Sameni M, Samadikuchaksaraei A, Seifalian AM (2015) Development of a cost-effective and simple protocol for decellularization and preservation of human amniotic membrane as a soft tissue replacement and delivery system for bone marrow stromal cells. Adv Healthc Mater 4(6):918–926

    Article  PubMed  CAS  Google Scholar 

  • Gholipourmalekabadi M, Sameni M, Radenkovic D, Mozafari M, Mossahebi-Mohammadi M, Seifalian A (2016) Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif 49(1):115–121

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Kedige SD, Jain K (2015) Amnion and chorion membranes: potential stem cell reservoir with wide applications in periodontics. Int J Biomater 2015:1–9

    Article  CAS  Google Scholar 

  • Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, Dua HS (2008) Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods 14(4):371–381

    Article  PubMed  CAS  Google Scholar 

  • Hsiao Y-C, Lee H-W, Chen Y-T, Young T-H, Yang T-L (2011) The impact of compositional topography of amniotic membrane scaffold on tissue morphogenesis of salivary gland. Biomaterials 32(19):4424–4432

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Ji S, Luo P, Liu H, Zhu S, Wang G, Zhou P, Xiao S, Xia Z (2013) Accelerated expansion of epidermal keratinocyte and improved dermal reconstruction achieved by engineered amniotic membrane. Cell Transplant 22(10):1831–1844

    Article  PubMed  Google Scholar 

  • Iijima K, Igawa Y, Imamura T, Moriizumi T, Nikaido T, Konishi I, Nishizawa O (2007) Transplantation of preserved human amniotic membrane for bladder augmentation in rats. Tissue Eng 13(3):513–524

    Article  PubMed  CAS  Google Scholar 

  • Insausti CL, Alcaraz A, García-Vizcaíno EM, Mrowiec A, López-Martínez MC, Blanquer M, Piñero A, Majado MJ, Moraleda JM, Castellanos G (2010) Amniotic membrane induces epithelialization in massive posttraumatic wounds. Wound Repair Regen 18(4):368–377

    Article  PubMed  Google Scholar 

  • Jayarama Reddy V, Radhakrishnan S, Ravichandran R, Mukherjee S, Balamurugan R, Sundarrajan S, Ramakrishna S (2013) Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen 21(1):1–16

    Article  PubMed  Google Scholar 

  • Jerman UD, Veranič P, Kreft ME (2013) Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods 20(4):317–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin CZ, Park SR, Choi BH, Lee K-Y, Kang CK, Min B-H (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13(4):693–702

    Article  PubMed  CAS  Google Scholar 

  • Kiernan JA (1999) Histological and histochemical methods: theory and practice. Shock 12(6):479

    Google Scholar 

  • Kim SS, Song CK, Shon SK, Lee KY, Kim CH, Lee MJ, Wang L (2009) Effects of human amniotic membrane grafts combined with marrow mesenchymal stem cells on healing of full-thickness skin defects in rabbits. Cell Tissue Res 336(1):59–66

    Article  PubMed  Google Scholar 

  • Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20(3):173–177

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K, Kociok N, Joussen AM, Kinoshita S (2007) Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefe’s Arch Clin Exp Ophthalmol 245(1):123–134

    Article  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Investig Ophthalmol Vis Sci 42(7):1539–1546

    CAS  Google Scholar 

  • Lawson VG (1985) Oral cavity reconstruction using pectoralis major muscle and amnion. Arch Otolaryngol 111(4):230–233

    Article  PubMed  CAS  Google Scholar 

  • Lee S-H, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123(3):303–312

    Article  PubMed  CAS  Google Scholar 

  • Li W, He H, Kuo C-L, Gao Y, Kawakita T, Tseng SC (2006) Basement membrane dissolution and reassembly by limbal corneal epithelial cells expanded on amniotic membrane. Investig Ophthalmol Vis Sci 47(6):2381–2389

    Article  Google Scholar 

  • Li Z, Qin H, Feng Z, Liu W, Zhou Y, Yang L, Zhao W, Li Y (2013) Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res 8(36):3441–3448

    PubMed  PubMed Central  Google Scholar 

  • Lindenmair A, Hatlapatka T, Kollwig G, Hennerbichler S, Gabriel C, Wolbank S, Redl H, Kasper C (2012) Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells 1(4):1061–1088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmoudi-Rad M, Abolhasani E, Moravvej H, Mahmoudi-Rad N, Mirdamadi Y (2013) Acellular amniotic membrane: an appropriate scaffold for fibroblast proliferation. Clin Exp Dermatol 38(6):646–651

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Silva G, Azevedo HS, Malafaya P, Sousa R, Silva S, Boesel L, Oliveira JM, Santos T, Marques A (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meller D, Pires R, Tseng S (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86(4):463–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl K-P (2011) Amniotic membrane transplantation in the human eye. Deutsch Ärzteblatt Int 108(14):243

    Google Scholar 

  • Mohammadi AA, Jafari SMS, Kiasat M, Tavakkolian AR, Imani MT, Ayaz M, Tolide-ie HR (2013) Effect of fresh human amniotic membrane dressing on graft take in patients with chronic burn wounds compared with conventional methods. Burns 39(2):349–353

    Article  PubMed  Google Scholar 

  • Naderi H, Matin MM, Bahrami AR (2011) Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26(4):383–417

    Article  PubMed  CAS  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99

    Article  CAS  Google Scholar 

  • Ohshima M, Tokunaga K, Sato S, Maeno M, Otsuka K (2003) Laminin-and fibronectin-like molecules produced by periodontal ligament fibroblasts under serum-free culture are potent chemoattractants for gingival epithelial cells. J Periodontal Res 38(2):175–181

    Article  PubMed  CAS  Google Scholar 

  • Orlando G, Wood KJ, Stratta RJ, Yoo JJ, Atala A, Soker S (2011) Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91(12):1310–1317

    Article  PubMed  Google Scholar 

  • Oyama N, Bhogal B, Carrington P, Gratian M, Black M (2003) Human placental amnion is a novel substrate for detecting autoantibodies in autoimmune bullous diseases by immunoblotting. Br J Dermatol 148(5):939–944

    Article  PubMed  CAS  Google Scholar 

  • Redondo P, Giménez de Azcarate A, Marqués L, García-Guzman M, Andreu E, Prósper F (2011) Amniotic membrane as a scaffold for melanocyte transplantation in patients with stable vitiligo. Dermatol Res Pract 2011:1–6

    Article  Google Scholar 

  • Rendal-Vázquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, López-Rodríguez I, Domenech-García N, Andión-Núñez C, Blanco-García F (2012) Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank 13(3):513–519

    Article  PubMed  CAS  Google Scholar 

  • Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31(2):216–225

    Article  PubMed  CAS  Google Scholar 

  • Saghizadeh M, Winkler MA, Kramerov AA, Hemmati DM, Ghiam CA, Dimitrijevich SD, Sareen D, Ornelas L, Ghiasi H, Brunken WJ (2013) A simple alkaline method for decellularizing human amniotic membrane for cell culture. PLoS ONE 8(11):1–6

    Article  CAS  Google Scholar 

  • Sanluis-Verdes A, Vilar MTY-P, García-Barreiro JJ, García-Camba M, Ibáñez JS, Doménech N, Rendal-Vázquez ME (2015) Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent. Cell Tissue Bank 16(3):411–423

    Article  PubMed  CAS  Google Scholar 

  • Sawhney C (1989) Amniotic membrane as a biological dressing in the management of burns. Burns 15(5):339–342

    Article  PubMed  CAS  Google Scholar 

  • Schulze U, Hampel U, Sel S, Goecke TW, Thäle V, Garreis F, Paulsen F (2012) Fresh and cryopreserved amniotic membrane secrete the trefoil factor family peptide 3 that is well known to promote wound healing. Histochem Cell Biol 138(2):243–250

    Article  PubMed  CAS  Google Scholar 

  • sheng Liang H, Liang P, Xu Y, ning Wu J, Liang T, ping Xu X, zhong Liu E (2009) Denuded human amniotic membrane seeding bone marrow stromal cells as an effective composite matrix stimulates axonal outgrowth of rat neural cortical cells in vitro. Acta Neurochir 151(9):1113–1120

    Article  Google Scholar 

  • Shortt AJ, Secker GA, Lomas RJ, Wilshaw SP, Kearney JN, Tuft SJ, Daniels JT (2009) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex vivo expansion of limbal epithelial cells. Biomaterials 30(6):1056–1065

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Nagayama T, Katayama T, Koizumi N (2010) Tensile properties of amniotic membrane. In De Wilde WP, Brebbia CA, Mander U (eds) High Performance Structures and Materials, vol 112. WIT Press, Belgium, pp 197–206

  • Tauzin H, Rolin G, Viennet C, Saas P, Humbert P, Muret P (2014) A skin substitute based on human amniotic membrane. Cell Tissue Bank 15(2):257–265

    Article  PubMed  CAS  Google Scholar 

  • Theoret C (2009) Tissue engineering in wound repair: the three “R” s—repair, replace, regenerate. Vet Surg 38(8):905–913

    Article  PubMed  Google Scholar 

  • Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105(3):215–228

    Article  PubMed  CAS  Google Scholar 

  • Trelford JD, Trelford-Sauder M (1979) The amnion in surgery, past and present. Am J Obstet Gynecol 134(7):833–845

    Article  PubMed  CAS  Google Scholar 

  • Wilshaw S-P, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12(8):2117–2129

    Article  PubMed  CAS  Google Scholar 

  • Wilshaw S-P, Kearney J, Fisher J, Ingham E (2008) Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng Part A 14(4):463–472

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Shirakata Y, Tokumaru S, Xiuju D, Tohyama M, Hanakawa Y, Hirakawa S, Sayama K, Hashimoto K (2009) Living skin equivalents constructed using human amnions as a matrix. J Dermatol Sci 56(3):188–195

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Yam GH-F, Riau AK, Poh R, Allen JC, Peh GS, Beuerman RW, Tan DT, Mehta JS (2013) The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culturethe effect of amniotic membrane denudation methods. Investig Ophthalmol Vis Sci 54(4):3072–3081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ferdowsi University of Mashhad (Grant Number 3.38091) and also ACECR-Khorasan Razavi Branch. We gratefully acknowledge the collaboration of Dr. Nasser Sanjar Moosavi in supplying liposuction materials and also Fatemeh Vakili for providing the HAMs. In addition, the authors gratefully acknowledge Fatemeh Naseri and  Mahmood Raeesolmohaddesin for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam M. Matin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranpour, S., Mahdavi-Shahri, N., Miri, R. et al. Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications. Cell Tissue Bank 19, 357–371 (2018). https://doi.org/10.1007/s10561-017-9680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9680-z

Keywords

Navigation