Skip to main content

Advertisement

Log in

Effects of human amniotic membrane grafts combined with marrow mesenchymal stem cells on healing of full-thickness skin defects in rabbits

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have investigated the wound-healing effects of mesenchymal stem cells (MSCs) in combination with human amniotic membrane (HAM) when grafted into full-thickness skin defects of rabbits. Five defects in each of four groups were respectively treated with HAM loaded with autologous MSCs (group A), HAM loaded with allologous MSCs (group B), HAM with injected autologous MSCs (group C), and HAM with injected allologous MSCs (group D). The size of the wounds was calculated for each group at 7, 12, and 15 days after grafting. The wounds were subsequently harvested at 25 days after grafting. Sections stained with hematoxylin and eosin were used to determine the quality of wound healing, as based on the characteristics and amount of granulated tissue in the epidermal and dermal layers. Groups A and B showed the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen on post-operative days 7, 12, and 15. Although a slight trend toward improved wound healing was seen in group A compared with group B, no statistically significant difference was found at any time point between the two groups. Histological examination of healed wounds from groups A and B showed a thin epidermis with mature differentiation and collagen bundle deposition plus recovered skin appendages in the dermal layer. In contrast, groups C and D showed thickened epidermis with immature epithelial cells and increased fibroblast proliferation with only partially recovered skin appendages in the dermal layer. Thus, the graft of HAM loaded with MSCs played an effective role during the healing of skin defects in rabbits, with no significant difference being observed in wound healing between autologous and allologous MSC transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, et al (1982) Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature 295:325–327

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Miyagi T, Ando N, Suzuki Y, Nemoto T, Eishi Y, et al (1999) Synthesis of basement membrane by gastrointestinal cancer cell lines. J Pathol 187:223–228

    Article  PubMed  CAS  Google Scholar 

  • Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet II:1003–1005

    Article  Google Scholar 

  • Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196:245–250

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, Mcintosh K, Patil S, et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  PubMed  Google Scholar 

  • Benirschke K, Kaufman P (2000) Pathology of the human placenta. Springer, New York, pp 273–281

    Google Scholar 

  • Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, et al (2005) Engrafted bone marrow-derived FIK-11 mesenchymal stem cells regenerate skin tissue. Tissue Eng 11:110–119

    Article  PubMed  CAS  Google Scholar 

  • Devine SM, Peter S, Martin BJ, Barry F, Mcintosh KR (2001) Mesenchymal stem cells: stealth and suppression. Cancer J 2:76–82

    Google Scholar 

  • Dinicola M, Carlo-Stella C, Magni M, Milanesi IM, Longoni PD, Matteucci P, et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  CAS  Google Scholar 

  • Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22:821–822

    Article  Google Scholar 

  • Fu X, Fang L, Li X, Cheng B, Sheng Z (2006) Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 14:325–335

    Article  PubMed  Google Scholar 

  • Hammer A, Hutter H, Blaschitz A, Mahnert W, Hartmann M, Uchanska-Ziegler B, et al (1997) Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am J Reprod Immunol 37:161–171

    PubMed  CAS  Google Scholar 

  • Herendael B van, Oberti C, Brosens I (1978) Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol 131:872–880

    PubMed  Google Scholar 

  • Kataoka K, Medina RJ, Kageyama T, Miyazaki M, Yoshino T, Makino T, et al (2003) Participation of adult mouse bone marrow cells in reconstitution of skin. Am J Pathol 163:1227–1231

    PubMed  Google Scholar 

  • Kim CH, Kim SS, Sohn SK, Kim DH, Song CG, Kim HJ (2008) The effect of human amniotic membrane, epidermal cells and marrow mesenchymal stem cells in healing a skin defect. J Korean Orthop Assoc 43:276–286

    Article  Google Scholar 

  • Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  PubMed  CAS  Google Scholar 

  • Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, et al (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 346:738–746

    Article  PubMed  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    PubMed  CAS  Google Scholar 

  • Lee JH, Kosinski PA, Kemp DM (2005) Contribution of human bone marrow stem cells to the individual skeletal myotubes followed by myogenic gene activation. Exp Cell Res 307:174–182

    Article  PubMed  CAS  Google Scholar 

  • Linden PJ van der, Groetj AF de, Dunselman GA (1996) Endometrial cell adhesion in an in vitro model using intact amniotic membranes. Fertil Steril 65:76–80

    PubMed  Google Scholar 

  • Lwebuga-Mukasa JS, Thulin G, Madri JA, Barrett C, Warshaw JB (1984) An acellular human amnionic membrane model for in vitro culture of type II pneumocytes: the role of the basement membrane in cell morphology and function. J Cell Physiol 121:215–225

    Article  PubMed  CAS  Google Scholar 

  • Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al (2003) Mesenchymal stem cells modified with Akt provent remodeling and restore preference of infarcted hearts. Nat Med 9:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • McIntosh K, Bartholomew A (2000) Stromal cell modulation of the immune system. A potential role for mesenchymal stem cells. Graft 3:324–328

    Google Scholar 

  • Modesti A, Scarpa S, D’Orazi G, Simonelli L, Caramia FG (1989) Localization of type IV and V collagens in the stroma of human amnion. Prog Clin Biol Res 296:459–463

    PubMed  CAS  Google Scholar 

  • Mohamad H (2001) Anatomy and embryology of human placenta. Amnion and chorion. World Scientific, London

    Google Scholar 

  • Nakagawa H, Akita S, Fukui M, Fujii T, Akino K (2005) Human mesenchymal stem cells successfully improve skin-substitute wound healing. Cutan Biol 153:2–36

    Google Scholar 

  • Okamoto R, Yajima T, Yamazki M, Kanai T, Mukai M, Okamoto S, et al (2002) Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 8:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Urda S, Lin Q, Green CL, Keene DR, Marinkovich MP, Khavari PA (2003) Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest 111:251–255

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Prasad J, Feller I, Thomson P (1986) Use of amnion for the treatment of Stevens-Johnson syndrome. J Trauma 26:945–946

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Kishi K, Tanaka T, Kubota Y, Nakajima T, Akasaka Y, et al (2004) Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant 13:405–412

    Article  PubMed  Google Scholar 

  • Sheridan RL, Tompkins RG (1990) Skin substitutes in burns. Burns 25:97–103

    Article  Google Scholar 

  • Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  • Subrahmanyam M (1995) Amniotic membrane as a cover for microskin grafts. Br J Plast Surg 48:477–478

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Matsuda K, Isshiki N, Tamada Y, Ikada Y (1990) Experimental study of a newly developed bilayer artificial skin. Biomaterials 11:356–360

    Article  PubMed  CAS  Google Scholar 

  • Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y (1991) Antibacterial properties of human amniotic membranes. Placenta 12:285–288

    Article  PubMed  CAS  Google Scholar 

  • Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  PubMed  CAS  Google Scholar 

  • Trelford J, Trelford-Sauder M (1979) The amnion in surgery, past and present. Am J Obstet Gynecol 134:833–845

    PubMed  CAS  Google Scholar 

  • Ueta M, Kweon MN, Sano Y, Sotozono C, Yamada J, Koizumi N, et al (2002) Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin Exp Immunol 129:464–470

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yoshida A, Kawashima H, Ishizaki M, Takahashi H, Hori J (2006) Immunogenicity and antigenicity of allogeneic amniotic epithelial transplants grafted to the cornea, conjunctiva, and anterior chamber. Invest Ophthalmol Vis Sci 47:1522–1532

    Article  PubMed  Google Scholar 

  • Wilshaw SP, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12:2117–2129

    Article  PubMed  CAS  Google Scholar 

  • Wolf HJ, Schmidt W, Drenckhahn D (1991) Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res 266:385–389

    Article  PubMed  CAS  Google Scholar 

  • Yan G, Su Y, Ai G (2004) Study on human amniotic membrane loaded with marrow mesenchymal stem cells and epidermis cells in promoting healing of wound combined with radiation injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 18:497–501

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lih Wang.

Additional information

This study was supported by research funds from Dong-A University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.S., Song, C.K., Shon, S.K. et al. Effects of human amniotic membrane grafts combined with marrow mesenchymal stem cells on healing of full-thickness skin defects in rabbits. Cell Tissue Res 336, 59–66 (2009). https://doi.org/10.1007/s00441-009-0766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0766-1

Keywords

Navigation