Skip to main content

Advertisement

Log in

In vivo construction of tissue-engineered cartilage using adipose-derived stem cells and bioreactor technology

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The present study aims to investigate the feasibility of tissue-engineered cartilage constructed in vivo and in vitro by dynamically culturing adipose-derived stem cells (ADSCs) with an articular cartilage acellular matrix in a bioreactor and subsequently implanting the cartilage in nude mice. ADSCs were proliferated, combined with three dimensional scaffolds (cell density: 5 × 107/mL) and subsequently placed in a bioreactor and culture plate for 3 weeks. In the in vivo study, complexes cultured for 1 week under dynamic or static states were subcutaneously implanted into nude mice and collected after 3 weeks. Indicators such as gross morphology, histochemistry and immunohistochemistry were examined. In the in vitro study, histological observation showed that most scaffolds in the dynamic group were absorbed, and cell proliferation and matrix secretion were significant. Positive staining of safranin-O and alcian blue II collagen stain in the dynamic group was significantly stronger than that in the static culture group. In the in vivo study, cartilage-like tissues formed in the specimens of the two groups. Histological examination showed that cell distribution in the dynamic group was relatively more uniform than in the static group, and matrix secretion was relatively stronger. Bioreactor culturing can promote ADSC proliferation and cartilage differentiation and is thus a suitable method for constructing tissue-engineered cartilage in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose-derived stem cells

PBS:

Phosphate-buffered saline

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Foetal bovine serum

IACUC:

Institutional Animal Care and Use Committee

bFGF:

Basic fibroblast growth factor

References

  • Andersson H, van den Berg A (2004) Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4:98–103

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593

    Article  CAS  PubMed  Google Scholar 

  • Danisovic L, Varga I, Zamborsky R, Böhmer D (2012) The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med 237:10–17. doi:10.1258/ebm.2011.011229

    Article  CAS  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  PubMed  Google Scholar 

  • Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, Hedrick MH, Benhaim P (2003) Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br 85:740–747

    CAS  PubMed  Google Scholar 

  • Ferrarini M, Steimberg N, Ponzoni M, Belloni D, Berenzi A, Girlanda S, Caligaris-Cappio F, Mazzoleni G, Ferrero E (2013) Ex-vivo dynamic 3-D culture of human tissues in the RCCS™ bioreactor allows the study of multiple myeloma biology and response to therapy. PLoS One 8:e71613. doi:10.1371/journal.pone.0071613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H (2005) Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun 333:116–121

    Article  CAS  PubMed  Google Scholar 

  • Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221

    Article  PubMed  Google Scholar 

  • Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7:208–218

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. Cell Physiol 206:229–237

    Article  CAS  Google Scholar 

  • Kang H, Peng J, Lu S, Liu S, Zhang L, Huang J, Sui X, Zhao B, Wang A, Xu W, Luo Z, Guo Q (2012) In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med 1538. doi:10.1002/term

  • Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347:613–627. doi:10.1007/s00441-011-1243-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lammi MJ, Inkinen R, Parkkinen JJ, Häkkinen T, Jortikka M, Nelimarkka LO, Järveläinen HT, Tammi MI (1994) Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochem J 304:723–730

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lei XH, Ning LN, Cao YJ, Liu S, Zhang SB, Qiu ZF, Hu HM, Zhang HS, Liu S, Duan EK (2011) NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 6:e26603. doi:10.1371/journal.pone.0026603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S, Ma Z, Niu Z, Qian H, Xuan D, Hou R, Ni L (2009) NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells. Stem Cells Dev 18:1273–1282. doi:10.1089/scd.2008.0371

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, Sekiya I (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells. Arthritis Rheum 54:843–853

    Article  CAS  PubMed  Google Scholar 

  • Nathan S, De Das S, Thambyah A, Fen C, Goh J, Lee EH (2003) Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 9:733–744

    Article  CAS  PubMed  Google Scholar 

  • Ogawa R, Mizuno H, Watanabe A, Migita M, Hyakusoku H, Shimada T (2004a) Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice-including relationship of sex differences. Biochem Biophys Res Commun 319:511–517

    Article  CAS  PubMed  Google Scholar 

  • Ogawa R, Mizuno H, Watanabe A, Migita M, Shimada T, Hyakusoku H (2004b) Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun 313:871–877

    Article  CAS  PubMed  Google Scholar 

  • Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300:458–465

    Article  CAS  PubMed  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  • Portron S, Merceron C, Gauthier O, Lesoeur J, Sourice S, Masson M, Fellah BH, Geffroy O, Lallemand E, Weiss P, Guicheux J, Vinatier C (2013) Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: application in cartilage tissue repair. PLoS One 8:e62368. doi:10.1371/journal.pone.0062368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raghunath J, Salacinski HJ, Sales KM, Butler PE, Seifalian AM (2005) Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol l16:503–509

    Article  Google Scholar 

  • Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128

    Article  CAS  PubMed  Google Scholar 

  • Rucci N, Migliaccio S, Zani BM, Taranta A, Teti A (2002) Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved rotating wall vessel bioreactor (RWV). J Cell Biochem 85:167–179

    Article  CAS  PubMed  Google Scholar 

  • Sambandam Y, Blanchard JJ, Daughtridge G, Kolb RJ, Shanmugarajan S, Pandruvada SN, Bateman TA, Reddy SV (2010) Microarray profile of gene expression during osteoclast differentiation in modelled microgravity. J Cell Biochem 111:1179–1187. doi:10.1002/jcb.22840

    Article  CAS  PubMed  Google Scholar 

  • Sikavitsas VI, Bancroft GN, Mikos AG (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62:136–148

    Article  CAS  PubMed  Google Scholar 

  • Simon WH, Mak A, Spirt A (1990) The effect of shear fatigue on bovine articular cartilage. J Orthop Res 8:86–93

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13:824–831

    Article  CAS  PubMed  Google Scholar 

  • Tomatsu T, Imai N, Takeuchi N, Takahashi K, Kimura N (1992) Experimentally produced fractures of articular cartilage and bone. The effects of shear forces on the pig knee. J Bone Joint Surg Br 74:457–462

    CAS  PubMed  Google Scholar 

  • Vacanti CA, Upton J (1994) Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plast Surg 21:445–462

    CAS  PubMed  Google Scholar 

  • Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ (2012) A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 18:1161–1170. doi:10.1089/ten.TEA.2011.0544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YH, Xia JY, Tang Y, Hang HF, Yi XP (2013) Recent advances in reactor and its engineering. Chin J Bioprocess Eng 11:14–23

    CAS  Google Scholar 

  • Xie L, Zhang N, Marsano A, Vunjak-Novakovic G, Zhang Y, Lopez MJ (2013) In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Rev 9:858–872. doi:10.1007/s12015-013-9456-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S (2008) A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 29:2378–2387. doi:10.1016/j.biomaterials.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwezdaryk KJ, Warner JA, Machado HL, Morris CA, Höner zu Bentrup K (2012) Rotating cell culture systems for human cell culture: human trophoblast cells as a model. J Vis Exp. doi: 10.3791/3367

Download references

Acknowledgments

This study was funded by the National Science Foundation of China (30330570), Beijing Science and Technology Development Foundation (H060920050630), Major State Basic Science Research and Development Program of China (973, No. 2005CB5227074) and Medical Health Research Found Project of Chinese PLA (06Z057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanyi Guo or Qing Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Lu, S., Peng, J. et al. In vivo construction of tissue-engineered cartilage using adipose-derived stem cells and bioreactor technology. Cell Tissue Bank 16, 123–133 (2015). https://doi.org/10.1007/s10561-014-9448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9448-7

Keywords

Navigation