Skip to main content

Advertisement

Log in

Sporicidal efficacy of genipin: a potential theoretical alternative for biomaterial and tissue graft sterilization

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Terminal sterilization of musculoskeletal allografts by gamma radiation minimizes the risk of disease transmission but impairs allograft mechanical properties. Commonly employed crosslinking agents can sterilize tissues without affecting mechanical properties adversely; however, these agents are toxic. Genipin is reported to be a benign crosslinking agent that strengthens mechanical properties of tissues; however, the antimicrobial capacity of genipin is largely unknown. The present study’s aims were: (1) to assess the sporicidal potential of genipin, (2) to improve antimicrobial capacity by changing chemical and physical treatment conditions. To establish genipin’s sterilization potential Bacillus subtilis var. niger spore strips were treated with 0–10 % genipin in PBS or in 1:1 DMSO:PBS up to 72 h at room temperature (RT). Sterilizing doses and concentrations of genipin were used to treat B. pumilus and Geobacillus stearothermophilus spores to assess broader spectrum sporicidal activity of genipin. Scanning electron microscopy (SEM) was performed to evaluate gross morphological changes after genipin treatment. Optimal sterilization conditions were determined by evaluating the effects of temperature (RT-50 °C), DMSO:PBS ratio (0:100–100:0), and treatment duration (24–72 h) on B. subtilis. Genipin penetration of full thickness bovine patellar tendon and cortical bone specimens was observed to assess the feasibility of the agent for treating grafts. Initial studies showed that after 72 h of treatment at RT with 0.63–10 % genipin/DMSO:PBS B. subtilis spore strips were sterilized; 0.63 % genipin/PBS did not sterilize spore strips at 72 h at RT. Genipin doses and concentrations that sterilized B. subtilis spore strips sterilized B. pumilus and G. stearothermophilus spore strips. SEM revealed no gross morphological differences between untreated and treated spores. Treatment optimization resulted in sterilization within 24 h with 100 % PBS, and DMSO facilitated sporicidal activity. Genipin penetrated full thickness patellar tendon specimens and 3.72 ± 0.58 mm in cortical bone specimens. Genipin sterilizes B. subtilis, B. pumilus, and G. stearothermophilus spore strips. It penetrates soft and hard tissues at doses previously shown to be non-toxic and to improve mechanical strength in collagen-rich soft tissues. Further studies are indicated to assess genipin’s effects on the mechanical properties of genipin-sterilized grafts, the ability of genipin to eradicate infectious species other than spores, and to assess whether sterilant activity persists after penetrating tissues and biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

DMSO:

Dimethyl sulfoxide

IQR:

Inter-quartile range

PBS:

Phosphate-buffered saline

RT:

Room temperature

SAL:

Sterility assurance level

SEM:

Scanning electron microscopy

B. :

Bacillus

G. :

Geobacillus

References

  • Anchordoguy TJ, Carpenter JF, Crowe JH, Crowe LM (1992) Temperature-dependent perturbation of phospholipid bilayers by dimethylsulfoxide. Biochim Biophys Acta 1104:117–122

    Article  PubMed  CAS  Google Scholar 

  • Avila MY, Navia JL (2010) Effect of genipin collagen crosslinking on porcine corneas. J Cataract Refract Surg 36:659–664

    Article  PubMed  Google Scholar 

  • Bailey AJ (1967) Irradiation-induced changes in the denaturation temperature and intermolecular cross-linking of tropocollagen. Radiat Res 31:206–214

    Article  PubMed  CAS  Google Scholar 

  • Basch H, Gadebusch HH (1968) In vitro antimicrobial activity of dimethyl sulfoxide. Appl Environ Microbiol 16:1953–1954

    CAS  Google Scholar 

  • Bertelli G, Gozza A, Forno GB, Vidili MG, Silvestro S, Venturini M, Del Mastro L, Garrone O, Rosso R, Dini D (1995) Topical dimethylsulfoxide for the prevention of soft tissue injury after extravasation of vesicant cytotoxic drugs: a prospective clinical study. J Clin Oncol 13:2851–2855

    PubMed  CAS  Google Scholar 

  • Boyce T, Edwards J, Scarborough N (1999) Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 30:571–581

    Article  PubMed  CAS  Google Scholar 

  • Bright RW, Burchardt H (1983) The biomechanical properties of preserved bone grafts. In: Friedlaender GE, Sell KW (eds) Osteochondral allografts: biology, banking and clinical applications. Little, Brown & Company, Boston, pp 241–247

    Google Scholar 

  • Bright RW, Smarsh JD, Gambill VM (1983) Sterilization of human bone by irradiation. In: Friedlaender GE, Mankin HJ, Sell KW (eds) Osteochondral allografts: biology, banking and clinical applications. Little, Brown & Company, Boston, pp 223–232

    Google Scholar 

  • Brobyn RD (1975) The human toxicology of dimethyl sulfoxide. Ann NY Acad Sci 243:497–506

    Article  PubMed  CAS  Google Scholar 

  • Burchardt H (1983) The biology of bone graft repair. Clin Orthop Relat Res 174:28–42

    PubMed  Google Scholar 

  • Burkhart KJ, Nowak TE, Blum J, Kuhn S, Welker M, Sternstein W, Mueller LP, Rommens PM (2010) Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed Tech (Berl) 55:361–365

    Article  Google Scholar 

  • Campbell DG, Li P (1999) Sterilization of HIV with irradiation: relevance to infected bone allografts. Aust N Z J Surg 69:517–521

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS (2005) An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 26:3911–3918

    Article  PubMed  CAS  Google Scholar 

  • Cheung DT, Perelman N, Tong D, Nimni ME (1990) The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers. J Biomed Mater Res 24:581–589

    Article  PubMed  CAS  Google Scholar 

  • Cohen SB, Sekiya JK (2007) Allograft safety in anterior cruciate ligament reconstruction. Clin Sports Med 26:597–605

    Article  PubMed  Google Scholar 

  • Colwell A, Hamer A, Blumsohn A, Eastell R (1996) To determine the effects of ultraviolet light, natural light and ionizing radiation in the pyridinium cross-links in bone and urine using high-performance liquid chromatography. Eur J Clin Invest 26:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Conrad EU, Gretch DR, Obermeyer KR, Moogk MS, Sayers M, Wilson JJ, Strong DM (1995) Transmission of the hepatitis-C virus by tissue transplantation. J Bone Joint Surg Am 77:214–224

    PubMed  CAS  Google Scholar 

  • Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD (2004) The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med 32:1131–1135

    Article  PubMed  Google Scholar 

  • Currey JD, Foreman J, Laketic I, Mitchell J, Pegg DE, Reilly GC (1997) Effects of ionizing radiation on the mechanical properties of human bone. J Orthop Res 15:111–117

    Article  PubMed  CAS  Google Scholar 

  • Cypher TJ, Grossman JP (1996) Biological principles of bone graft healing. J Foot Ankle Surg 35:413–417

    Article  PubMed  CAS  Google Scholar 

  • Dominici JT, Eleazer PD, Clark SJ, Staat RH, Scheetz JP (2001) Disinfection/sterilization of extracted teeth for dental student use. J Dent Educ 65:1278–1280

    PubMed  CAS  Google Scholar 

  • Fassel TA, Sohnle PG, Kushnaryov VM (1997) The use of dimethylsulfoxide for fixation of yeasts for electron microscopy. Biotech Histochem 72:268–272

    Article  PubMed  CAS  Google Scholar 

  • FDA (2002) Updated 510(k) sterility review guidance K90–1; Guidance for Industry and FDA. Review Procedures for All Sterilization Methods. US Food and Drug Administration, Silver Spring

    Google Scholar 

  • Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23:643–646

    Article  PubMed  CAS  Google Scholar 

  • Friedlaender GE (1983) Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res 174:58–68

    PubMed  Google Scholar 

  • Friedlaender GE, Strong DM, Tomford WW, Mankin HJ (1999) Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am 30:583–588

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa S, Yokota T, Koga K, Kumada J (1987) The continuous hydrolysis of geniposide to genipin using immobilized beta-glucosidase on calcium alginate gel. Biotechnol Lett 9:697–702

    Article  CAS  Google Scholar 

  • Gillis JR, Mosley GA, Kowalski JB, Krushefski G, Nirgenau PT, McCauley KJ (2010) Understanding biological indicator grow-out times. Pharm Tech 34

  • Gurkan UA, Cheng X, Kishore V, Uquillas JA, Akkus O (2010) Comparison of morphology, orientation, and migration of tendon derived fibroblasts and bone marrow stromal cells on electrochemically aligned collagen constructs. J Biomed Mater Res A 94:1070–1079

    PubMed  Google Scholar 

  • Halvorson HO, Ziegler NR (1933) Application of statistics to problems in bacteriology: I. A means of determining bacterial population by the dilution method. J Bacteriol 25:101–121

    PubMed  CAS  Google Scholar 

  • Henderson TR, Henderson RF, York JL (1975) Effects of dimethyl sulfoxide on subunit proteins. Ann NY Acad Sci 243:38–53

    Article  PubMed  CAS  Google Scholar 

  • Hernigou P, Delepine G, Goutallier D, Julieron A (1993) Massive allografts sterilised by irradiation. Clinical results. J Bone Joint Surg Br 75:904–913

    PubMed  CAS  Google Scholar 

  • ISO11139:2006 (2006) International organization for standardization. Sterilization of health care products—vocabulary. Geneva, Switzerland

  • Jackson DW, Corsetti J, Simon TM (1996) Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res 324:126–133

    Article  PubMed  Google Scholar 

  • Jacob SW, Herschler R (1986) Pharmacology of DMSO. Cryobiology 23:14–27

    Article  PubMed  CAS  Google Scholar 

  • Joyce MJ, Greenwald AS, Boden S, Brubaker S, Heim CS (2008) Musculoskeletal allograft tissue safety. American Academy of Orthopaedic Surgeons, AAOS 75th annual meeting San Francisco

  • Kishore V, Bullock W, Sun X, Van Dyke WS, Akkus O (2012a) Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads. Biomaterials 33:2137–2144

    Article  PubMed  CAS  Google Scholar 

  • Kishore V, Uquillas JA, Dubikovsky A, Alshehabat MA, Snyder PW, Breur GJ, Akkus O (2012b) In vivo response to electrochemically aligned collagen bioscaffolds. J Biomed Mater Res B Appl Biomater 100B:400–408

    Google Scholar 

  • Klesper B, Wahn J, Koebke J (2000) Comparisons of bone volumes and densities relating to osseointegrated implants in microvascularly reconstructed mandibles: a study of cadaveric radius and fibula bones. J Craniomaxillofac Surg 28:110–115

    Article  PubMed  CAS  Google Scholar 

  • Komender A (1976) Influence of preservation on some mechanical properties of human haversian bone. Mater Med Pol 8:13–17

    PubMed  CAS  Google Scholar 

  • Lelono RA, Tachibana S, Itoh K (2009) Isolation of antifungal compounds from Gardenia jasminoides. Pak J Biol Sci 12:949–956

    Article  PubMed  CAS  Google Scholar 

  • Li W, Li J, DeVincentis D, Mansour T (2004) Oxygen transfer from sulfoxide: formation of aromatic aldehydes from dihalomethylarenes. Tetrahedron Lett 45:1071–1074

    Article  CAS  Google Scholar 

  • Lietman SA, Tomford WW, Gebhardt MC, Springfield DS, Mankin HJ (2000) Complications of irradiated allografts in orthopaedic tumor surgery. Clin Orthop Relat Res 375:214–217

    Article  PubMed  Google Scholar 

  • Liu BS, Yao CH, Chen YS, Hsu SH (2003) In vitro evaluation of degradation and cytotoxicity of a novel composite as a bone substitute. J Biomed Mater Res A 67:1163–1169

    Article  PubMed  Google Scholar 

  • Loshon CA, Genest PC, Setlow B, Setlow P (1999) Formaldehyde kills spores of Bacillus subtilis by DNA damage and small, acid-soluble spore proteins of the alpha/beta-type protect spores against this DNA damage. J Appl Microbiol 87:8–14

    Article  PubMed  CAS  Google Scholar 

  • Ludwig CU, Stoll HR, Obrist R, Obrecht JP (1987) Prevention of cytotoxic drug induced skin ulcers with dimethyl sulfoxide (DMSO) and alpha-tocopherole. Eur J Cancer Clin Oncol 23:327–329

    Article  PubMed  CAS  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    PubMed  CAS  Google Scholar 

  • Moon SH, Choi HJ, Lee SJ, Chung JU, Kim JH, Chung DH, Park MS, Cho IK, Choi KH (2000) Genipin derivative having anti hepatitis B virus activity. USA Patent 6162826, Choongwae Pharmaceutical Corporation, pp 1–15

  • Moore DR, Cain EL, Schwartz ML, Clancy WG Jr (2006) Allograft reconstruction for massive, irreparable rotator cuff tears. Am J Sports Med 34:392–396

    Article  PubMed  Google Scholar 

  • Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11:130–140

    Article  PubMed  CAS  Google Scholar 

  • Myoung H, Kim YY, Heo MS, Lee SS, Choi SC, Kim MJ (2001) Comparative radiologic study of bone density and cortical thickness of donor bone used in mandibular reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:23–29

    Article  PubMed  CAS  Google Scholar 

  • Ng KW, Wanivenhaus F, Chen T, Abrams VD, Torzilli PA, Warren RF, Maher SA (2012) Differential cross-linking and radio-protective effects of genipin on mature bovine and human patella tendons. Cell Tissue Bank. doi:10.1007/s10561-012-9295-3

  • Nishi C, Nakajima N, Ikada Y (1995) In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 29:829–834

    Article  PubMed  CAS  Google Scholar 

  • NLM (2011) Formaldehyde. http://chem.sis.nlm.nih.gov/chemidplus/ProxyServlet?objectHandle=Search&actionHandle=getAll3DMViewFiles&nextPage=jsp%2Fcommon%2FChemFull.jsp%3FcalledFrom%3Dlite&chemid=0000050000&formatType=_3D. Accessed 16 Aug 2011

  • Rappe M, Horodyski M, Meister K, Indelicato PA (2007) Nonirradiated versus irradiated Achilles allograft: in vivo failure comparison. Am J Sports Med 35:1653–1658

    Article  PubMed  Google Scholar 

  • Sagripanti JL, Bonifacino A (1996) Comparative sporicidal effects of liquid chemical agents. Appl Environ Microbiol 62:545–551

    PubMed  CAS  Google Scholar 

  • Salehpour A, Butler DL, Proch FS, Schwartz HE, Feder SM, Doxey CM, Ratcliffe A (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13:898–906

    Article  PubMed  CAS  Google Scholar 

  • Scherbel AL, McCormack JL, Layle JK (1968) Further observations on the effect of dimethyl sulfoxide in patients with generalized scleroderma (progressive systemic sclerosis). Ann NY Acad Sci 141:613–629

    Article  Google Scholar 

  • Setlow P (2005) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  Google Scholar 

  • Simonds RJ, Holmberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, Kohlenberg SH, Castro KG, Dahan BA, Schable CA et al (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 326:726–732

    Article  PubMed  CAS  Google Scholar 

  • Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14:753–764

    Article  PubMed  CAS  Google Scholar 

  • Sun K, Tian S, Zhang J, Xia C, Zhang C, Yu T (2009) Anterior cruciate ligament reconstruction with BPTB autograft, irradiated versus non-irradiated allograft: a prospective randomized clinical study. Knee Surg Sports Traumatol Arthrosc 17:464–474

    Article  PubMed  Google Scholar 

  • Sung HW, Huang RN, Huang LL, Tsai CC (1999) In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 10:63–78

    Article  PubMed  CAS  Google Scholar 

  • Sung HW, Chang Y, Liang IL, Chang WH, Chen YC (2000) Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res 52:77–87

    Article  PubMed  CAS  Google Scholar 

  • Sung HW, Chang WH, Ma CY, Lee MH (2003) Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 64:427–438

    Article  PubMed  Google Scholar 

  • The SD (1975) Long-distance bactericidal and fungicidal effectiveness of parachlorophenol and Formalin on Streptococcus faecalis and Candida albicans. J Endod 1:300–302

    Article  PubMed  CAS  Google Scholar 

  • Touyama R, Takeda Y, Inoue K, Kawamura I, Yatsuzuka M, Ikumoto T, Shingu T, Yokoi T, Inouye H (1994) Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem Pharm Bull 42:668–673

    Article  CAS  Google Scholar 

  • Tsai TH, Westly J, Lee TF, Chen CF (1994) Identification and determination of geniposide, genipin, gardenoside, and geniposidic acid from herbs by HPLC/photodiode-array detection. J Liq Chromatogr 17:2199–2205

    Article  CAS  Google Scholar 

  • Upton J, Glowacki J (1992) Hand reconstruction with allograft demineralized bone: twenty-six implants in twelve patients. J Hand Surg Am 17:704–713

    Article  PubMed  CAS  Google Scholar 

  • USPC (2002) United States Pharmacopeia 25—National Formulary 20. USP biological indicator for ethylene oxide sterilization, paper carrier. Webcom Limited, Toronto, pp 233–234

  • Van Kleunen JP, Elliott DM (2003) Effect of a natural crosslinking agent (genipin) on tendon longitudinal and transverse tensile properties. Summer bioengineering conference, Key Biscayne, FL

  • WHO (2011) Quality control in sterilization. http://www.searo.who.int/en/Section10/Section17/Section53/Section375_1190.htm. Accessed 17 Dec 2011

  • Wilke HJ, Krischak S, Claes LE (1996) Formalin fixation strongly influences biomechanical properties of the spine. J Biomech 29:1629–1631

    PubMed  CAS  Google Scholar 

  • Windrum P, Morris TCM, Drake MB, Niederwieser D, Ruutu T (2005) Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant 36:601–603

    Article  PubMed  CAS  Google Scholar 

  • Yerramalli CS, Chou AI, Miller GJ, Nicoll SB, Chin KR, Elliott DM (2007) The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 6:13–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by AOTrauma North America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Akkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, M.S., Akkus, O. Sporicidal efficacy of genipin: a potential theoretical alternative for biomaterial and tissue graft sterilization. Cell Tissue Bank 14, 381–393 (2013). https://doi.org/10.1007/s10561-012-9335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9335-z

Keywords

Navigation