Skip to main content
Log in

Effects of Glucagon-Like Peptide-1 Receptor Agonist (GLP-1RA) on Cardiac Structure and Function: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Recent trials suggest glucagon-like peptide-1 receptor agonists (GLP-1RAs) may have a cardioprotective role by reducing major adverse cardiac events, stroke mortality and heart failure-related hospitalisations. We examined whether and how GLP-1RAs affect cardiac function in cardiovascular and metabolic diseases including type 2 diabetes, heart failure and post-myocardial infarction.

Methods

In this PRISMA-adherent systematic review and meta-analysis, three databases were searched from inception to July 2021 and registered on PROSPERO (CRD42021259661).

Results

20 reports of 19 randomized placebo-controlled trials including 2062 participants were meta-analyzed. Among type 2 diabetes patients, GLP-1RA resulted in improved systolic function measured by circumferential strain (mean difference [MD]= -5.48; 95% CI: -10.47 to -0.49; P= 0.03; I2= 89%) and diastolic dysfunction measured by E / A (MD= -0.15; 95% CI: -0.25 to -0.05; P= 0.003; I2= 0%). For post-myocardial infarction patients, GLP-1RA reduced infarct size (g) (MD= -5.36; 95% CI: -10.68 to -0.04; P= 0.05; I2= 78%). Liraglutide, but not exenatide, demonstrated improved systolic function, by increasing left ventricular ejection fraction (MD= 4.89; 95% CI: 3.62 to 6.16; P< 0.00001; I2= 0%) and reducing left ventricular end-systolic volume (MD= -4.15; 95% CI: -7.49 to -0.81; P = 0.01; I2= 0%). Among heart failure patients, no significant changes were noted.

Conclusion

GLP-1RA drugs may improve systolic and diastolic function in type 2 diabetes and reduce infarct size post-acute myocardial infarction with no demonstrable effect on cardiac function in heart failure. Tailored recommendations for the use of GLP-1RAs for cardioprotection should be considered for each patient’s condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. F. Marsico et al., "Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: a meta-analysis of randomized controlled trials," Eur Heart J, vol. 41, no. 35, pp. 3346-3358, 2020, doi: .

  2. Hinnen D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017;30(3):202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18(4):317–32.

    Article  CAS  PubMed  Google Scholar 

  4. Gejl M, et al. Influence of GLP-1 on myocardial glucose metabolism in healthy men during normo- or hypoglycemia. PLoS One. 2014;9(1):e83758.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li R, Shan Y, Gao L, Wang X, Wang X, Wang F. The Glp-1 Analog Liraglutide Protects Against Angiotensin II and Pressure Overload-Induced Cardiac Hypertrophy via PI3K/Akt1 and AMPKa Signaling. Front Pharmacol. 2019;10:537.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang D, Jiang L, Feng B, He N, Zhang Y, Ye H. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J Diabetes Investig. 2020;11(1):39–51.

    Article  PubMed  Google Scholar 

  7. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation. 2017;136(9):849–70.

    Article  CAS  PubMed  Google Scholar 

  8. Petersen SE, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017;19(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Solomon SD, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112(24):3738–44.

    Article  PubMed  Google Scholar 

  10. Wu E, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94(6):730–6.

    Article  CAS  PubMed  Google Scholar 

  11. Hillis GS, et al. Noninvasive estimation of left ventricular filling pressure by E/e' is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol. 2004;43(3):360–7.

    Article  PubMed  Google Scholar 

  12. Chang SA, et al. Noninvasive estimate of left ventricular filling pressure correlated with early and midterm postoperative cardiovascular events after isolated aortic valve replacement in patients with severe aortic stenosis. J Thorac Cardiovasc Surg. 2010;140(6):1361–6.

    Article  PubMed  Google Scholar 

  13. Natali A, Nesti L, Trico D, Ferrannini E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 2021;20(1):196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. Liberati et al., "The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration," J Clin Epidemiol, vol. 62, no. 10, pp. e1-34, Oct 2009, doi: .

  15. S. F. Nagueh et al., "Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging," Eur Heart J Cardiovasc Imaging, vol. 17, no. 12, pp. 1321-1360, Dec 2016, doi: .

  16. Sterne JAC, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    Article  PubMed  Google Scholar 

  17. Review Manager (RevMan). 2020.

  18. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, 2019.

  19. Wagner AM, et al. Effect of liraglutide on physical performance in type 2 diabetes: Results of a randomized, double-blind, controlled trial (LIPER2). Diabetes Metab. 2019;45(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  20. Jorsal A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  21. R. Nielsen et al., "The impact of the glucagon-like peptide-1 receptor agonist liraglutide on natriuretic peptides in heart failure patients with reduced ejection fraction with and without type 2 diabetes," Diabetes Obes Metab, vol. 22, no. 11, pp. 2141-2150, Nov 2020, doi: .

  22. Margulies KB, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2016;316(5):500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumarathurai P, Sajadieh A, Anholm C, Kristiansen OP, Haugaard SB, Nielsen OW. Effects of liraglutide on diastolic function parameters in patients with type 2 diabetes and coronary artery disease: a randomized crossover study. Cardiovasc Diabetol. 2021;20(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumarathurai P, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study. Cardiovasc Diabetol. 2016;15(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen WR, et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine. 2016;52(3):516–26.

    Article  CAS  PubMed  Google Scholar 

  26. Chen WR, et al. Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am Heart J. 2015;170(5):845–54.

    Article  CAS  PubMed  Google Scholar 

  27. Chen WR, et al. Effects of Liraglutide on Reperfusion Injury in Patients With ST-Segment-Elevation Myocardial Infarction. Circ Cardiovasc Imaging. 2016;9(12). https://doi.org/10.1161/CIRCIMAGING.116.005146.

  28. Lepore JJ, et al. Effects of the Novel Long-Acting GLP-1 Agonist, Albiglutide, on Cardiac Function, Cardiac Metabolism, and Exercise Capacity in Patients With Chronic Heart Failure and Reduced Ejection Fraction. JACC Heart Fail. 2016;4(7):559–66.

    Article  PubMed  Google Scholar 

  29. Lonborg J, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang JY, Wang XY, Wang X. Effects of liraglutide on hemodynamic parameters in patients with heart failure. Oncotarget. 2017;8(37):62693–702.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Roos ST, et al. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int J Cardiol. 2016;220:809–14.

    Article  PubMed  Google Scholar 

  32. Woo JS, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol. 2013;33(9):2252–60.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia Del Blanco B, et al. Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the Myocardial Infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Res Cardiol. 2021;116(1):4.

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen PG, et al. Effect of exercise combined with glucagon-like peptide-1 receptor agonist treatment on cardiac function: A randomized double-blind placebo-controlled clinical trial. Diabetes Obes Metab. 2017;19(7):1040–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bizino MB, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol. 2019;18(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paiman EHM, et al. Effect of Liraglutide on Cardiovascular Function and Myocardial Tissue Characteristics in Type 2 Diabetes Patients of South Asian Descent Living in the Netherlands: A Double-Blind, Randomized, Placebo-Controlled Trial. J Magn Reson Imaging. 2020;51(6):1679–88.

    Article  PubMed  Google Scholar 

  37. Scalzo RL, et al. Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes. J Diabetes Complicat. 2017;31(2):449–55.

    Article  Google Scholar 

  38. Ikonomidis I, et al. Effects of Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients With Type 2 Diabetes Mellitus After 12-Month Treatment. J Am Heart Assoc. 2020;9(9):e015716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. M. Lang et al., "EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography," Eur Heart J Cardiovasc Imaging, vol. 13, no. 1, pp. 1-46, Jan 2012, doi: .

  40. Lang RM, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39 e14.

    Article  PubMed  Google Scholar 

  41. Lang RM, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.

    Article  PubMed  Google Scholar 

  42. Ibanez B, et al. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74(2):238–56.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bogdanovic J, et al. Impact of acute hyperglycemia on layer-specific left ventricular strain in asymptomatic diabetic patients: an analysis based on two-dimensional speckle tracking echocardiography. Cardiovasc Diabetol. 2019;18(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cioffi G, et al. Combined circumferential and longitudinal left ventricular systolic dysfunction in patients with type 2 diabetes mellitus without myocardial ischemia. Exp Clin Cardiol. 2013;18(1):e26–31 [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/24294044.

    PubMed  PubMed Central  Google Scholar 

  45. von Bibra H, Sutton MSJ. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia. 2010;53(6):1033–45.

    Article  Google Scholar 

  46. Oktay AA et al. Diabetes, Cardiomyopathy, and Heart Failure, in Endotext, K. R. Feingold et al. Eds. South Dartmouth (MA), 2000.

  47. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation. 1995;92(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  48. Pride YB, et al. Relation between infarct size in ST-segment elevation myocardial infarction treated successfully by percutaneous coronary intervention and left ventricular ejection fraction three months after the infarct. Am J Cardiol. 2010;106(5):635–40.

    Article  PubMed  Google Scholar 

  49. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  50. Timmers L, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53(6):501–10.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao T, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317(3):1106–13.

    Article  CAS  PubMed  Google Scholar 

  52. G. Multicenter Postinfarction Research. Risk stratification and survival after myocardial infarction. N Engl J Med. 1983;309(6):331–6.

    Article  Google Scholar 

  53. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  54. Jenca D, et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8(1):222–37.

    Article  PubMed  Google Scholar 

  55. Melchior T, Rask-Madsen C, Torp-Pedersen C, Hildebrandt P, Kober L, Jensen G. The impact of heart failure on prognosis of diabetic and non-diabetic patients with myocardial infarction: a 15-year follow-up study. Eur J Heart Fail. 2001;3(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  56. Lewis EF, et al. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol. 2003;42(8):1446–53.

    Article  PubMed  Google Scholar 

  57. Stone GW, et al. Relationship Between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis From 10 Randomized Trials. J Am Coll Cardiol. 2016;67(14):1674–83.

    Article  PubMed  Google Scholar 

  58. Trevisan M, et al. Glucagon-like peptide-1 receptor agonists and the risk of cardiovascular events in diabetes patients surviving an acute myocardial infarction. Eur Heart J Cardiovasc Pharmacother. 2021;7(2):104–11.

    Article  PubMed  Google Scholar 

  59. Khan MS, et al. Glucagon-Like Peptide 1 Receptor Agonists and Heart Failure: The Need for Further Evidence Generation and Practice Guidelines Optimization. Circulation. 2020;142(12):1205–18.

    Article  CAS  PubMed  Google Scholar 

  60. Fudim M, et al. Effect of Once-Weekly Exenatide in Patients With Type 2 Diabetes Mellitus With and Without Heart Failure and Heart Failure-Related Outcomes: Insights From the EXSCEL Trial. Circulation. 2019;140(20):1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Husain M, et al. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes Metab. 2020;22(3):442–51.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tougaard RS, et al. Heart rate increases in liraglutide treated chronic heart failure patients: association with clinical parameters and adverse events. Scand Cardiovasc J. 2020;54(5):294–9.

    Article  CAS  PubMed  Google Scholar 

  63. DeVore AD, et al. Relation of Elevated Heart Rate in Patients With Heart Failure With Reduced Ejection Fraction to One-Year Outcomes and Costs. Am J Cardiol. 2016;117(6):946–51.

    Article  PubMed  Google Scholar 

  64. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021. https://doi.org/10.1136/heartjnl-2020-318060.

  65. Cosentino F, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.

    Article  PubMed  Google Scholar 

  66. Arnett DK, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):e177–232.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Garber AJ, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2020 Executive Summary. Endocr Pract. 2020;26(1):107–39.

    Article  PubMed  Google Scholar 

  68. Bajaj S. RSSDI clinical practice recommendations for the management of type 2 diabetes mellitus 2017. Int J Diabetes Dev Ctries. 2018;38(Suppl 1):1–115.

    Article  PubMed  Google Scholar 

  69. López GRB, González LJ, Mendoza RG, Yáñez GF. Dapagliflozin Effects on Mayor Adverse Cardiovascular Events in Patients With Acute Myocardial Infarction (DAPA-AMI) (DAPA-AMI). (accessed.

  70. Ma X, et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci. 2021;17(8):2050–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Data Availability Statement

The data underlying this article are available in the article and in its online supplementary material.

Funding

CS was supported by the National University of Singapore Yong Loo Lin School of Medicine’s Junior Academic Faculty Scheme.

Author information

Authors and Affiliations

Authors

Contributions

SYW, ARYBL, YHT and CS designed the study and developed the study protocol and tools. SYW, ARYBL, AHJS and YJW were responsible for data collection. YNT and YHT performed statistical analysis. SYW and ARYBL wrote the manuscript. All authors contributed to the conceptualization of the research questions, interpretation of the results, and manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ching-Hui Sia.

Ethics declarations

Ethical Approval

This article did not involve any animal or human studies.

Competing Interests

The Author(s) declare(s) that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 3609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, S.Y., Lee, A.R.Y.B., Sia, A.H.J. et al. Effects of Glucagon-Like Peptide-1 Receptor Agonist (GLP-1RA) on Cardiac Structure and Function: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Cardiovasc Drugs Ther 38, 371–389 (2024). https://doi.org/10.1007/s10557-022-07360-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07360-w

Keywords

Navigation