Skip to main content

Advertisement

Log in

Sodium-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are new antidiabetic drugs that reduce hyperglycemia by inhibiting the glucose reabsorption in renal proximal tubules. Clinical studies have shown that SGLT2 inhibitors not only improve glycemic control but also reduce major adverse cardiovascular events (MACE, cardiovascular and total mortality, fatal or nonfatal myocardial infarction or stroke) and hospitalization for heart failure (HF), and improve outcome in chronic kidney disease. These cardiovascular and renal benefits have now been confirmed in both diabetes and non-diabetes patients. The precise mechanism(s) responsible for the protective effects are under intensive investigation. This review examines current evidence on the cardiovascular benefits of SGLT2 inhibitors, with a special emphasis on the vascular actions and their potential mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Abbreviations

AAA:

Abdominal aortic aneurysm

AGE:

Advanced glycation end-product

AIx:

Augmentation index

AMBP:

Ambulatory blood pressure

CVD:

Cardiovascular disease

EC:

Endothelial cell

EDR:

Endothelium-dependent relaxation

EiPH:

Exercise-induced pulmonary hypertension

ESRD:

End-stage renal disease

FMD:

Flow-mediated dilation

GPx:

Glutathione peroxidase

HbA1c:

Hemoglobin A1c

HF:

Heart failure

HFrEF:

Heart failure with reduced ejection fraction

HLI:

Hind-limb ischemia

HO-1:

Heme oxygenase-1

hsCRP:

High-sensitivity C-reactive protein

ICAM-1:

Intercellular adhesion molecule-1

IMT:

Intima-media thickness

MMP7:

Matrix metalloproteinase 7

NHE:

Na+/H+ exchanger

NLRP3:

Nucleotide-binding oligomerization domain (NOD)-like receptor 3

NOX:

NADPH oxidase

NRF2:

NF-E2-related factor-2

PAH:

Pulmonary arterial hypertension

PAR:

Proteinase-activated receptor

PCT:

Proximal convoluted tubules

PDGF:

Platelet-derived growth factor

PVAT:

Perivascular adipose tissue

PWV:

Pulse wave velocity

SGLT2:

Sodium-glucose cotransporter-2

SHR:

Spontaneously hypertensive rat

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

T2DM:

Type 2 diabetes mellitus

UA:

Uric acid

VCAM-1:

Vascular adhesion molecule-1

VSMC:

Vascular smooth muscle cell

References

  1. Ghosh RK, Ghosh SM, Chawla S, Jasdanwala SA. SGLT2 inhibitors: a new emerging therapeutic class in the treatment of type 2 diabetes mellitus. J Clin Pharmacol. 2012;52(4):457–63.

    Article  CAS  PubMed  Google Scholar 

  2. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  3. Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099.

    PubMed  Google Scholar 

  4. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  5. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  6. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  7. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chin KL, Ofori-Asenso R, Hopper I, et al. Potential mechanisms underlying the cardiovascular benefits of sodium glucose cotransporter 2 inhibitors: a systematic review of data from preclinical studies. Cardiovasc Res. 2019;115(2):266–76.

    Article  CAS  PubMed  Google Scholar 

  9. Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes Metab. 2020;22(1):16–29.

    Article  CAS  PubMed  Google Scholar 

  10. Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Cardiol. 2017;120(1S):S28–36.

    Article  CAS  PubMed  Google Scholar 

  11. Berg DD, Jhund PS, Docherty KF, et al. Time to clinical benefit of Dapagliflozin and significance of prior heart failure hospitalization in patients with heart failure with reduced ejection fraction. JAMA Cardiol. 2021;6(5):499–507.

  12. Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with Ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383(15):1425–35.

    Article  CAS  PubMed  Google Scholar 

  13. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with Empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  14. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–72.

    Article  CAS  PubMed  Google Scholar 

  15. Whalen KL, Stewart RD. Pharmacologic management of hypertension in patients with diabetes. Am Fam Physician. 2008;78(11):1277–82.

    PubMed  Google Scholar 

  16. Liu J, Patel S, Cater NB, et al. Efficacy and safety of ertugliflozin in east/southeast Asian patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2020;22(4):574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kario K, Okada K, Murata M, et al. Effects of luseogliflozin on arterial properties in patients with type 2 diabetes mellitus: the multicenter, exploratory LUSCAR study. J Clin Hypertens (Greenwich). 2020;22(9):1585–93.

    Article  CAS  Google Scholar 

  19. Dimitriadis GK, Nasiri-Ansari N, Agrogiannis G, et al. Empagliflozin improves primary haemodynamic parameters and attenuates the development of atherosclerosis in high fat diet fed APOE knockout mice. Mol Cell Endocrinol. 2019;494:110487.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura T, Nakamura K, Miyoshi T, et al. Inhibitory effects of Tofogliflozin on cardiac hypertrophy in dahl salt-sensitive and salt-resistant rats fed a high-fat diet. Int Heart J. 2019;60(3):728–35.

    Article  CAS  PubMed  Google Scholar 

  21. Younis F, Leor J, Abassi Z, et al. Beneficial effect of the SGLT2 inhibitor Empagliflozin on glucose homeostasis and cardiovascular parameters in the Cohen Rosenthal diabetic hypertensive (CRDH) rat. J Cardiovasc Pharmacol Ther. 2018;23(4):358–71.

    Article  CAS  PubMed  Google Scholar 

  22. Wang XX, Levi J, Luo Y, et al. SGLT2 PROTEIN expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J Biol Chem. 2017;292(13):5335–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rahman A, Kittikulsuth W, Fujisawa Y, et al. Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome. J Hypertens. 2016;34(5):893–906.

    Article  CAS  PubMed  Google Scholar 

  24. Abdurrachim D, Teo XQ, Woo CC, et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized (13) C magnetic resonance spectroscopy study. Diabetes Obes Metab. 2019;21(2):357–65.

    Article  CAS  PubMed  Google Scholar 

  25. Habibi J, Aroor AR, Sowers JR, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miyata KN, Zhao S, Wu CH, et al. Comparison of the effects of insulin and SGLT2 inhibitor on the renal renin-angiotensin system in type 1 diabetes mice. Diabetes Res Clin Pract. 2020;162:108107.

    Article  CAS  PubMed  Google Scholar 

  27. Houston M, Hays L. Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients. J Clin Hypertens (Greenwich). 2014;16(7):524–9.

    Article  CAS  Google Scholar 

  28. Goso Y, Asanoi H, Ishise H, et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure. Circulation. 2001;104(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  29. Tain YL, Joles JA. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney. Int J Mol Sci. 2015;17(1):23.

  30. Pi X, Xie L, Patterson C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ Res. 2018;123(4):477–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014;306(3):H317–25.

    Article  CAS  PubMed  Google Scholar 

  32. Shigiyama F, Kumashiro N, Miyagi M, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zainordin NA, Hatta S, Mohamed Shah FZ et al. Effects of Dapagliflozin on Endothelial Dysfunction in Type 2 Diabetes With Established Ischemic Heart Disease (EDIFIED). J Endocr Soc. 2020;4(1):bvz017.

  35. Tanaka A, Shimabukuro M, Machii N, et al. Effect of Empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: results from the multicenter, randomized, placebo-controlled. Double-Blind EMBLEM Trial Diabetes Care. 2019;42(10):e159–61.

    CAS  PubMed  Google Scholar 

  36. Alshnbari AS, Millar SA, O'Sullivan SE, Idris I. Effect of sodium-glucose Cotransporter-2 inhibitors on endothelial function: a systematic review of preclinical studies. Diabetes Ther. 2020;11(9):1947–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res. 2018;123(7):825–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–46.

    Article  PubMed  Google Scholar 

  39. Willum-Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113(5):664–70.

    Article  PubMed  Google Scholar 

  40. Cherney DZ, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor Empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136(12):1167–9.

    Article  CAS  PubMed  Google Scholar 

  42. Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bosch A, Ott C, Jung S, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Papadopoulou E, Loutradis C, Tzatzagou G, et al. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39(4):749–58.

    Article  CAS  PubMed  Google Scholar 

  45. Pfeifer M, Townsend RR, Davies MJ, Vijapurkar U, Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol. 2017;16(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Katakami N, Mita T, Yoshii H, et al. Effect of tofogliflozin on arterial stiffness in patients with type 2 diabetes: prespecified sub-analysis of the prospective, randomized, open-label, parallel-group comparative UTOPIA trial. Cardiovasc Diabetol. 2021;20(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13:148.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aroor AR, Das NA, Carpenter AJ, et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol. 2018;17(1):108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh-Swaby OR, Goodman SG, Leiter LA, et al. Glucose-lowering drugs or strategies, atherosclerotic cardiovascular events, and heart failure in people with or at risk of type 2 diabetes: an updated systematic review and meta-analysis of randomised cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2020;8(5):418–35.

    Article  CAS  PubMed  Google Scholar 

  51. Kohsaka S, Lam CSP, Kim DJ, et al. Risk of cardiovascular events and death associated with initiation of SGLT2 inhibitors compared with DPP-4 inhibitors: an analysis from the CVD-REAL 2 multinational cohort study. Lancet Diabetes Endocrinol. 2020;8(7):606–15.

    Article  CAS  PubMed  Google Scholar 

  52. Han JH, Oh TJ, Lee G, et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (−/−) mice fed a western diet. Diabetologia. 2017;60(2):364–76.

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Xu J, Wu M, Xu B, Kang L. Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity. Lipids Health Dis. 2021;20(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tomita I, Kume S, Sugahara S et al. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab. 2020;32(3):404–419.e6.

  55. Pennig J, Scherrer P, Gissler MC, et al. Glucose lowering by SGLT2-inhibitor empagliflozin accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice. Sci Rep. 2019;9(1):17937.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nasiri-Ansari N, Dimitriadis GK, Agrogiannis G, et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol. 2018;17(1):106.

    Article  CAS  Google Scholar 

  57. Leng W, Ouyang X, Lei X, et al. The SGLT-2 inhibitor Dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE(−/−) mice. Mediat Inflamm. 2016;2016:6305735.

    Article  Google Scholar 

  58. Terasaki M, Hiromura M, Mori Y, et al. Amelioration of hyperglycemia with a sodium-glucose cotransporter 2 inhibitor prevents macrophage-driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice. PLoS One. 2015;10(11):e0143396.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Al-Sharea A, Murphy AJ, Huggins LA, Hu Y, Goldberg IJ, Nagareddy PR. SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr(−/−) type 1 diabetic mice. Atherosclerosis. 2018;271:166–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee SG, Lee SJ, Lee JJ, et al. Anti-inflammatory effect for atherosclerosis progression by sodium-glucose cotransporter 2 (SGLT-2) inhibitor in a Normoglycemic rabbit model. Korean Circ J. 2020;50(5):443–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Terasaki M, Hiromura M, Mori Y, et al. Combination therapy with a sodium-glucose cotransporter 2 inhibitor and a dipeptidyl Peptidase-4 inhibitor additively suppresses macrophage foam cell formation and atherosclerosis in diabetic mice. Int J Endocrinol. 2017;2017:1365209.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nakatsu Y, Kokubo H, Bumdelger B et al. The SGLT2 Inhibitor Luseogliflozin Rapidly Normalizes Aortic mRNA Levels of Inflammation-Related but Not Lipid-Metabolism-Related Genes and Suppresses Atherosclerosis in Diabetic ApoE KO Mice. Int J Mol Sci. 2017;18(8):1704.

  63. Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vasc Pharmacol. 2020;133-134:106779.

    Article  CAS  Google Scholar 

  64. Taberner-Cortes A, Vinue A, Herrero-Cervera A et al. Dapagliflozin Does Not Modulate Atherosclerosis in Mice with Insulin Resistance. Int J Mol Sci. 2020;21(23):9216.

  65. Day EA, Ford RJ, Lu JH, et al. The SGLT2 inhibitor canagliflozin suppresses lipid synthesis and interleukin-1 beta in ApoE deficient mice. Biochem J. 2020;477(12):2347–61.

    Article  PubMed  Google Scholar 

  66. Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018;44(6):457–64.

    Article  CAS  PubMed  Google Scholar 

  67. Hasan R, Lasker S, Hasan A, et al. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. Sci Rep. 2020;10(1):14459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ganbaatar B, Fukuda D, Shinohara M, et al. Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. Eur J Pharmacol. 2020;875:173040.

    Article  CAS  PubMed  Google Scholar 

  69. Simon A, Megnien JL, Chironi G. The value of carotid intima-media thickness for predicting cardiovascular risk. Arterioscler Thromb Vasc Biol. 2010;30(2):182–5.

    Article  CAS  PubMed  Google Scholar 

  70. Cao JJ, Arnold AM, Manolio TA, et al. Association of carotid artery intima-media thickness, plaques, and C-reactive protein with future cardiovascular disease and all-cause mortality: the cardiovascular health study. Circulation. 2007;116(1):32–8.

    Article  PubMed  Google Scholar 

  71. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115(4):459–67.

    Article  PubMed  Google Scholar 

  72. Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the carotid atherosclerosis progression study (CAPS). Stroke. 2006;37(1):87–92.

    Article  PubMed  Google Scholar 

  73. Bernard S, Serusclat A, Targe F, et al. Incremental predictive value of carotid ultrasonography in the assessment of coronary risk in a cohort of asymptomatic type 2 diabetic subjects. Diabetes Care. 2005;28(5):1158–62.

    Article  PubMed  Google Scholar 

  74. Mitsuhashi N, Onuma T, Kubo S, Takayanagi N, Honda M, Kawamori R. Coronary artery disease and carotid artery intima-media thickness in Japanese type 2 diabetic patients. Diabetes Care. 2002;25(8):1308–12.

    Article  PubMed  Google Scholar 

  75. Kasami R, Kaneto H, Katakami N, et al. Relationship between carotid intima-media thickness and the presence and extent of coronary stenosis in type 2 diabetic patients with carotid atherosclerosis but without history of coronary artery disease. Diabetes Care. 2011;34(2):468–70.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72.

    Article  CAS  PubMed  Google Scholar 

  77. Kotronias RA, Bray JH, Scarsini R, et al. Transcatheter aortic valve replacement and percutaneous coronary intervention versus surgical aortic valve replacement and coronary artery bypass grafting in patients with severe aortic stenosis and concomitant coronary artery disease: a systematic review and meta-analysis. Catheter Cardiovasc Interv. 2020;96(5):1113–25.

    Article  PubMed  Google Scholar 

  78. Horiba M, Kadomatsu K, Nakamura E, et al. Neointima formation in a restenosis model is suppressed in midkine-deficient mice. J Clin Invest. 2000;105(4):489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Katakami N, Mita T, Yoshii H, et al. Tofogliflozin does not delay progression of carotid atherosclerosis in patients with type 2 diabetes: a prospective, randomized, open-label, parallel-group comparative study. Cardiovasc Diabetol. 2020;19(1):110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sakai T, Miura S. Effects of sodium-glucose cotransporter 2 inhibitor on vascular endothelial and diastolic function in heart failure with preserved ejection fraction- novel prospective cohort study. Circ Rep. 2019;1(7):286–95.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Irace C, Casciaro F, Scavelli FB, et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc Diabetol. 2018;17(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mori Y, Terasaki M, Hiromura M, et al. Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling. Cardiovasc Diabetol. 2019;18(1):143.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mori K, Tsuchiya K, Nakamura S, et al. Ipragliflozin-induced adipose expansion inhibits cuff-induced vascular remodeling in mice. Cardiovasc Diabetol. 2019;18(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Behnammanesh G, Durante GL, Khanna YP, Peyton KJ, Durante W. Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: role of heme oxygenase-1. Redox Biol. 2020;32:101527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Davis FM, Daugherty A, Lu HS. Updates of recent aortic aneurysm research. Arterioscler Thromb Vasc Biol. 2019;39(3):e83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raffort J, Lareyre F, Clement M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic aneurysm: current state of the art. Cardiovasc Res. 2018;114(13):1702–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ortega R, Collado A, Selles F, et al. SGLT-2 (sodium-glucose cotransporter 2) inhibition reduces Ang II (angiotensin II)-induced dissecting abdominal aortic aneurysm in ApoE (Apolipoprotein E) knockout mice. Arterioscler Thromb Vasc Biol. 2019;39(8):1614–28.

    Article  CAS  PubMed  Google Scholar 

  88. van der Feen DE, Bartelds B, de Boer RA, Berger RMF. Pulmonary arterial hypertension in congenital heart disease: translational opportunities to study the reversibility of pulmonary vascular disease. Eur Heart J. 2017;38(26):2034–41.

    Article  PubMed  Google Scholar 

  89. Chowdhury B, Luu AZ, Luu VZ, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun. 2020;524(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  90. Satoh T, Wang L, Levine A et al. SGLT2 Inhibition Ameliorates Exercise-Induced Pulmonary Hypertension (EIPH) in Heart Failure with Preserved Ejection Fraction. Am J Respir Crit Care Med. 2020;201(A7671).

  91. Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rieg T, Masuda T, Gerasimova M, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306(2):F188–93.

    Article  CAS  PubMed  Google Scholar 

  93. Jurczak MJ, Lee HY, Birkenfeld AL, et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes. 2011;60(3):890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jurczak MJ, Saini S, Ioja S, et al. SGLT2 knockout prevents hyperglycemia and is associated with reduced pancreatic β-cell death in genetically obese mice. Islets. 2018;10(5):181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013;304(2):F156–67.

    Article  CAS  PubMed  Google Scholar 

  96. Nespoux J, Patel R, Zhang H, et al. Gene knockout of the Na(+)-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol. 2020;318(5):F1100–12.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vallianou NG, Geladari E, Kazazis CE. SGLT-2 inhibitors: their pleiotropic properties. Diabetes Metab Syndr. 2017;11(4):311–5.

    Article  PubMed  Google Scholar 

  98. Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016;39(5):717–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gomez-Peralta F, Abreu C, Lecube A, et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Ther. 2017;8(5):953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maruthur NM, Tseng E, Hutfless S, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164(11):740–51.

    Article  PubMed  Google Scholar 

  101. Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–31.

    Article  CAS  PubMed  Google Scholar 

  102. Bailey CJ. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab. 2019;21(6):1291–8.

    Article  CAS  PubMed  Google Scholar 

  103. Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458–62.

    Article  CAS  PubMed  Google Scholar 

  104. Davies MJ, Trujillo A, Vijapurkar U, Damaraju CV, Meininger G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17(4):426–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hao Z, Huang X, Shao H, Tian F. Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: a randomized controlled trial. Ther Clin Risk Manag. 2018;14:2407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a "thrifty substrate" hypothesis. Diabetes Care. 2016;39(7):1108–14.

    Article  PubMed  Google Scholar 

  107. Verma S, Rawat S, Ho KL, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci. 2018;3(5):575–87.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5.

    Article  CAS  PubMed  Google Scholar 

  109. Iannantuoni F, A MdM, Diaz-Morales N et al. The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes. J Clin Med 2019;8(11):1814.

  110. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.

    Article  CAS  PubMed  Google Scholar 

  111. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gupta A. Real-world clinical effectiveness and tolerability of Hydroxychloroquine 400 mg in uncontrolled type 2 diabetes subjects who are not willing to initiate insulin therapy (HYQ-real-world study). Curr Diabetes Rev. 2019;15(6):510–9.

    Article  CAS  PubMed  Google Scholar 

  113. Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. MetabClin Exp. 2018;85:32–7.

    CAS  Google Scholar 

  114. Uthman L, Kuschma M, Romer G, et al. Novel anti-inflammatory effects of Canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human coronary artery endothelial cells. Cardiovasc Drugs Ther. 2020. https://doi.org/10.1007/s10557-020-07083-w.

  115. Rahadian A, Fukuda D, Salim HM, et al. Canagliflozin prevents diabetes-induced vascular dysfunction in ApoE-deficient mice. J Atheroscler Thromb. 2020;27(11):1141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gaspari T, Spizzo I, Liu H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: a potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018;15(1):64–73.

    Article  CAS  PubMed  Google Scholar 

  117. Uthman L, Homayr A, Juni RP, et al. Empagliflozin and Dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor alpha-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–86.

    Article  CAS  PubMed  Google Scholar 

  118. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276(10):7614–20.

    Article  CAS  PubMed  Google Scholar 

  119. Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M. Glycemic control with Ipragliflozin, a novel selective SGLT2 inhibitor. Ameliorated Endothelial Dysfunction in Streptozotocin-Induced Diabetic Mouse Front Cardiovasc Med. 2016;3:43.

    PubMed  Google Scholar 

  120. Chen H, Tran D, Yang HC, Nylander S, Birnbaum Y, Ye Y. Dapagliflozin and Ticagrelor have additive effects on the attenuation of the activation of the NLRP3 Inflammasome and the progression of diabetic cardiomyopathy: an AMPK-mTOR interplay. Cardiovasc Drugs Ther. 2020;34(4):443–61.

    Article  CAS  PubMed  Google Scholar 

  121. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with Dapagliflozin reduces the activation of the Nlrp3/ASC Inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with Saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32.

    Article  PubMed  Google Scholar 

  122. Kim SR, Lee SG, Kim SH, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11(1):2127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sukhanov S, Higashi Y, Yoshida T, et al. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1beta and IL-18 secretion. Cell Signal. 2021;77:109825.

    Article  CAS  PubMed  Google Scholar 

  124. Koyani CN, Plastira I, Sourij H, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158:104870.

    Article  CAS  PubMed  Google Scholar 

  125. Heerspink HJL, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62(7):1154–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Osorio H, Coronel I, Arellano A, Franco M, Escalante B, Bautista R. Ursodeoxycholic acid decreases sodium-glucose cotransporter (SGLT2) expression and oxidative stress in the kidney of diabetic rats. Diabetes Res Clin Pract. 2012;97(2):276–82.

    Article  CAS  PubMed  Google Scholar 

  127. Maeda S, Matsui T, Takeuchi M, Yamagishi S. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev. 2013;29(5):406–12.

    Article  CAS  PubMed  Google Scholar 

  128. Ishibashi Y, Matsui T, Yamagishi S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks Proinflammatory and Proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm Metab Res. 2016;48(3):191–5.

    CAS  PubMed  Google Scholar 

  129. Oelze M, Kroller-Schon S, Welschof P, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One. 2014;9(11):e112394.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Isermann B, Bierhaus A, Humpert PM, et al. AGE-RAGE: a hypothesis or a mechanism? Herz. 2004;29(5):504–9.

    Article  PubMed  Google Scholar 

  131. Steven S, Oelze M, Hanf A, et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017;13:370–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shin SJ, Chung S, Kim SJ, et al. Effect of sodium-glucose co-transporter 2 inhibitor, Dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One. 2016;11(11):e0165703.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sugizaki T, Zhu S, Guo G, et al. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech Dis. 2017;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Han Y, Cho YE, Ayon R, et al. SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L1027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. De Stefano A, Tesauro M, Di Daniele N, Vizioli G, Schinzari F, Cardillo C. Mechanisms of SGLT2 (sodium-glucose transporter type 2) inhibition-induced relaxation in arteries from human visceral adipose tissue. Hypertension. 2021;77(2):729–38.

    Article  PubMed  Google Scholar 

  137. Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia. 2018;61(3):722–6.

    Article  CAS  PubMed  Google Scholar 

  138. Wang S, Peng Q, Zhang J, Liu L. Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc Res. 2008;80(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  139. El-Daly M, Pulakazhi Venu VK, Saifeddine M, et al. Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vasc Pharmacol. 2018;109:56–71.

    Article  CAS  Google Scholar 

  140. Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ozutsumi T, Namisaki T, Shimozato N et al. Combined Treatment with Sodium-Glucose Cotransporter-2 Inhibitor (Canagliflozin) and Dipeptidyl Peptidase-4 Inhibitor (Teneligliptin) Alleviates NASH Progression in A Non-Diabetic Rat Model of Steatohepatitis. Int J Mol Sci. 2020;21(6):2164.

  142. Behnammanesh G, Durante ZE, Peyton KJ, et al. Canagliflozin inhibits human endothelial cell proliferation and tube formation. Front Pharmacol. 2019;10:362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nalugo M, Harroun N, Li C, Belaygorod L, Semenkovich CF, Zayed MA. Canagliflozin impedes ischemic hind-limb recovery in the setting of diabetes. Vasc Med. 2020:1358863x20961153.

  144. Paul SK, Bhatt DL, Montvida O. The association of amputations and peripheral artery disease in patients with type 2 diabetes mellitus receiving sodium-glucose cotransporter type-2 inhibitors: real-world study. Eur Heart J. 2021;42(18):1728–1738.

  145. Nugrahaningrum DA, Marcelina O, Liu C, Wu S, Kasim V. Dapagliflozin promotes neovascularization by improving paracrine function of skeletal muscle cells in diabetic Hindlimb ischemia mice through PHD2/HIF-1alpha Axis. Front Pharmacol. 2020;11:1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Takahashi H, Nomiyama T, Terawaki Y, et al. Combined treatment with DPP-4 inhibitor linagliptin and SGLT2 inhibitor empagliflozin attenuates neointima formation after vascular injury in diabetic mice. Biochem Biophys Rep. 2019;18:100640.

    PubMed  PubMed Central  Google Scholar 

  147. Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, et al. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci U S A. 2006;103(45):17018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Matsui-Hirai H, Hayashi T, Yamamoto S, et al. Dose-dependent modulatory effects of insulin on glucose-induced endothelial senescence in vitro and in vivo: a relationship between telomeres and nitric oxide. J Pharmacol Exp Ther. 2011;337(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  149. Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, et al. Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med. 2020;24(3):2109–22.

    Article  CAS  PubMed  Google Scholar 

  150. Warboys CM, de Luca A, Amini N, et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol. 2014;34(5):985–95.

    Article  CAS  PubMed  Google Scholar 

  151. Park S-H, Farooq MA, Gaertner S et al. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovasc Diabetol. 2020;19(1):19.

  152. Eskelinen EL. Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol 2019;111:1–10.

  153. Nussenzweig SC, Verma S, Finkel T. The role of autophagy in vascular biology. Circ Res. 2015;116(3):480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xu C, Wang W, Zhong J, et al. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem Pharmacol. 2018;152:45–59.

    Article  CAS  PubMed  Google Scholar 

  155. Umino H, Hasegawa K, Minakuchi H, et al. High basolateral glucose increases sodium-glucose cotransporter 2 and reduces Sirtuin-1 in renal tubules through glucose Transporter-2 detection. Sci Rep. 2018;8(1):6791.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol. 2019;170:113677.

    Article  PubMed  Google Scholar 

  157. Wang CY, Chen CC, Lin MH et al. TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology (Basel). 2020;9(11):369.

  158. Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient Autophagic flux in diabetic CKD development: implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol. 2020;31(5):907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res. 2008;103(8):891–9.

    Article  CAS  PubMed  Google Scholar 

  160. Jiang K, Xu Y, Wang D, et al. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. 2021. https://doi.org/10.1007/s13238-020-00809-4.

Download references

Acknowledgments

We apologize for omitting many worthy references due to space limitations.

Funding

Grant support was received from the Ministry of Science and Technology (National Key R&D Program 2018YFA0800600) and the National Science Foundation of China (91939108, 81830015 and 81770497).

Author information

Authors and Affiliations

Authors

Contributions

L.X., X.N., Y.C and N.W. drafted the manuscript; N.W. edited and revised the manuscript; L.X., X.N., Y.C and N.W. approved the final version of the manuscript.

Corresponding author

Correspondence to Nanping Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Nie, X., Cheng, Y. et al. Sodium-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms. Cardiovasc Drugs Ther 35, 1253–1267 (2021). https://doi.org/10.1007/s10557-021-07216-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07216-9

Keywords

Navigation